Metamath Proof Explorer


Theorem constrext2chnlem

Description: Lemma for constrext2chn . (Contributed by Thierry Arnoux, 26-Oct-2025)

Ref Expression
Hypotheses constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
constrextdg2.1 E = fld 𝑠 e
constrextdg2.2 F = fld 𝑠 f
constrextdg2.l < ˙ = f e | E /FldExt F E .:. F = 2
constrextdg2.n φ N ω
constrext2chnlem.q Q = fld 𝑠
constrext2chnlem.l L = fld 𝑠 fld fldGen A
constrext2chnlem.a φ A Constr
Assertion constrext2chnlem φ n 0 L .:. Q = 2 n

Proof

Step Hyp Ref Expression
1 constr0.1 C = rec s V x | a s b s c s d s t r x = a + t b a x = c + r d c b a d c 0 a s b s c s e s f s t x = a + t b a x c = e f a s b s c s d s e s f s a d x a = b c x d = e f 0 1
2 constrextdg2.1 E = fld 𝑠 e
3 constrextdg2.2 F = fld 𝑠 f
4 constrextdg2.l < ˙ = f e | E /FldExt F E .:. F = 2
5 constrextdg2.n φ N ω
6 constrext2chnlem.q Q = fld 𝑠
7 constrext2chnlem.l L = fld 𝑠 fld fldGen A
8 constrext2chnlem.a φ A Constr
9 2prm 2
10 9 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p 2
11 7 6 oveq12i L .:. Q = fld 𝑠 fld fldGen A .:. fld 𝑠
12 cnfldbas = Base fld
13 eqid fld 𝑠 = fld 𝑠
14 eqid fld 𝑠 fld fldGen A = fld 𝑠 fld fldGen A
15 cnfldfld fld Field
16 15 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld Field
17 cndrng fld DivRing
18 qsubdrg SubRing fld fld 𝑠 DivRing
19 18 simpli SubRing fld
20 18 simpri fld 𝑠 DivRing
21 issdrg SubDRing fld fld DivRing SubRing fld fld 𝑠 DivRing
22 17 19 20 21 mpbir3an SubDRing fld
23 22 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v SubDRing fld
24 nnon m ω m On
25 24 adantl φ m ω m On
26 1 25 constrsscn φ m ω C m
27 26 sselda φ m ω A C m A
28 27 snssd φ m ω A C m A
29 28 ad2antrr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A
30 12 13 14 16 23 29 fldgenfldext φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 fld fldGen A /FldExt fld 𝑠
31 30 ad2antrr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A /FldExt fld 𝑠
32 extdgcl fld 𝑠 fld fldGen A /FldExt fld 𝑠 fld 𝑠 fld fldGen A .:. fld 𝑠 0 *
33 31 32 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠 0 *
34 simpr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 = 2 p
35 2z 2
36 35 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p 2
37 simplr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p p 0
38 36 37 zexpcld φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p 2 p
39 34 38 eqeltrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠
40 39 zred φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠
41 xnn0xr fld 𝑠 fld fldGen A .:. fld 𝑠 0 * fld 𝑠 fld fldGen A .:. fld 𝑠 *
42 31 32 41 3syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠 *
43 eqid Base fld 𝑠 lastS v = Base fld 𝑠 lastS v
44 simplr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v Chain SubDRing fld < ˙
45 simprl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v 0 =
46 45 oveq2d φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 v 0 = fld 𝑠
47 eqidd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v = fld 𝑠 lastS v
48 simpr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = v =
49 48 fveq1d φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = v 0 = 0
50 0fv 0 =
51 50 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = 0 =
52 49 51 eqtrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = v 0 =
53 45 adantr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = v 0 =
54 1nn 1
55 nnq 1 1
56 54 55 ax-mp 1
57 56 ne0ii
58 57 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v =
59 53 58 eqnetrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = v 0
60 59 neneqd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v = ¬ v 0 =
61 52 60 pm2.65da φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v ¬ v =
62 61 neqned φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v
63 44 62 hashne0 φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v 0 < v
64 2 3 4 44 16 46 47 63 fldext2chn φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v /FldExt fld 𝑠 p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p
65 64 simpld φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v /FldExt fld 𝑠
66 fldextfld1 fld 𝑠 lastS v /FldExt fld 𝑠 fld 𝑠 lastS v Field
67 65 66 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v Field
68 44 chnwrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v v Word SubDRing fld
69 lswcl v Word SubDRing fld v lastS v SubDRing fld
70 68 62 69 syl2anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v lastS v SubDRing fld
71 17 a1i φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld DivRing
72 qsscn
73 72 a1i φ m ω A C m
74 73 28 unssd φ m ω A C m A
75 74 ad2antrr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A
76 12 71 75 fldgensdrg φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld fldGen A SubDRing fld
77 13 qrngbas = Base fld 𝑠
78 77 65 fldextsdrg φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v SubDRing fld 𝑠 lastS v
79 43 sdrgss SubDRing fld 𝑠 lastS v Base fld 𝑠 lastS v
80 78 79 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v Base fld 𝑠 lastS v
81 12 sdrgss lastS v SubDRing fld lastS v
82 70 81 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v lastS v
83 eqid fld 𝑠 lastS v = fld 𝑠 lastS v
84 83 12 ressbas2 lastS v lastS v = Base fld 𝑠 lastS v
85 82 84 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v lastS v = Base fld 𝑠 lastS v
86 80 85 sseqtrrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v lastS v
87 simprr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v C m lastS v
88 simpllr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A C m
89 87 88 sseldd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A lastS v
90 89 snssd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A lastS v
91 86 90 unssd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v A lastS v
92 12 71 70 91 fldgenssp φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld fldGen A lastS v
93 id lastS v SubDRing fld lastS v SubDRing fld
94 83 93 subsdrg lastS v SubDRing fld fld fldGen A SubDRing fld 𝑠 lastS v fld fldGen A SubDRing fld fld fldGen A lastS v
95 94 biimpar lastS v SubDRing fld fld fldGen A SubDRing fld fld fldGen A lastS v fld fldGen A SubDRing fld 𝑠 lastS v
96 70 76 92 95 syl12anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld fldGen A SubDRing fld 𝑠 lastS v
97 43 67 96 sdrgfldext φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v /FldExt fld 𝑠 lastS v 𝑠 fld fldGen A
98 70 elexd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v lastS v V
99 ressabs lastS v V fld fldGen A lastS v fld 𝑠 lastS v 𝑠 fld fldGen A = fld 𝑠 fld fldGen A
100 98 92 99 syl2anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v 𝑠 fld fldGen A = fld 𝑠 fld fldGen A
101 97 100 breqtrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v /FldExt fld 𝑠 fld fldGen A
102 101 ad2antrr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v /FldExt fld 𝑠 fld fldGen A
103 extdgcl fld 𝑠 lastS v /FldExt fld 𝑠 fld fldGen A fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A 0 *
104 102 103 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A 0 *
105 xnn0xr fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A 0 * fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A *
106 104 105 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A *
107 extdggt0 fld 𝑠 lastS v /FldExt fld 𝑠 fld fldGen A 0 < fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A
108 102 107 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p 0 < fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A
109 extdgmul fld 𝑠 lastS v /FldExt fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A /FldExt fld 𝑠 fld 𝑠 lastS v .:. fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠
110 101 30 109 syl2anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v fld 𝑠 lastS v .:. fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠
111 110 ad2antrr φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠
112 xmulcom fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A * fld 𝑠 fld fldGen A .:. fld 𝑠 * fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠 = fld 𝑠 fld fldGen A : fld 𝑠 𝑒 fld 𝑠 lastS v : fld 𝑠 fld fldGen A
113 106 42 112 syl2anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠 = fld 𝑠 fld fldGen A : fld 𝑠 𝑒 fld 𝑠 lastS v : fld 𝑠 fld fldGen A
114 111 113 eqtrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 = fld 𝑠 fld fldGen A : fld 𝑠 𝑒 fld 𝑠 lastS v : fld 𝑠 fld fldGen A
115 40 42 106 108 114 rexmul2 φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠
116 extdggt0 fld 𝑠 fld fldGen A /FldExt fld 𝑠 0 < fld 𝑠 fld fldGen A .:. fld 𝑠
117 31 116 syl φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p 0 < fld 𝑠 fld fldGen A .:. fld 𝑠
118 33 115 117 xnn0nnd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠
119 11 118 eqeltrid φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p L .:. Q
120 40 106 42 117 111 rexmul2 φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A
121 104 120 xnn0nn0d φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A 0
122 121 nn0zd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A
123 118 nnnn0d φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠 0
124 123 nn0zd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A .:. fld 𝑠
125 rexmul fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A .:. fld 𝑠 fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠
126 120 115 125 syl2anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v : fld 𝑠 fld fldGen A 𝑒 fld 𝑠 fld fldGen A : fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠
127 111 126 eqtrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v .:. fld 𝑠 = fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠
128 127 eqcomd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠 = fld 𝑠 lastS v .:. fld 𝑠
129 128 34 eqtrd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠 = 2 p
130 dvds0lem fld 𝑠 lastS v .:. fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A .:. fld 𝑠 2 p fld 𝑠 lastS v : fld 𝑠 fld fldGen A fld 𝑠 fld fldGen A : fld 𝑠 = 2 p fld 𝑠 fld fldGen A : fld 𝑠 2 p
131 122 124 38 129 130 syl31anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p fld 𝑠 fld fldGen A : fld 𝑠 2 p
132 11 131 eqbrtrid φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p L : Q 2 p
133 dvdsprmpweq 2 L .:. Q p 0 L : Q 2 p n 0 L .:. Q = 2 n
134 133 imp 2 L .:. Q p 0 L : Q 2 p n 0 L .:. Q = 2 n
135 10 119 37 132 134 syl31anc φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p n 0 L .:. Q = 2 n
136 64 simprd φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v p 0 fld 𝑠 lastS v .:. fld 𝑠 = 2 p
137 135 136 r19.29a φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v n 0 L .:. Q = 2 n
138 simplr φ m ω A C m m ω
139 1 2 3 4 138 constrextdg2 φ m ω A C m v Chain SubDRing fld < ˙ v 0 = C m lastS v
140 137 139 r19.29a φ m ω A C m n 0 L .:. Q = 2 n
141 1 isconstr A Constr m ω A C m
142 8 141 sylib φ m ω A C m
143 140 142 r19.29a φ n 0 L .:. Q = 2 n