| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constr0.1 |
|
| 2 |
|
constrextdg2.1 |
|
| 3 |
|
constrextdg2.2 |
|
| 4 |
|
constrextdg2.l |
|
| 5 |
|
constrextdg2.n |
|
| 6 |
|
constrext2chnlem.q |
|
| 7 |
|
constrext2chnlem.l |
|
| 8 |
|
constrext2chnlem.a |
|
| 9 |
|
2prm |
|
| 10 |
9
|
a1i |
|
| 11 |
7 6
|
oveq12i |
|
| 12 |
|
cnfldbas |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
cnfldfld |
|
| 16 |
15
|
a1i |
|
| 17 |
|
cndrng |
|
| 18 |
|
qsubdrg |
|
| 19 |
18
|
simpli |
|
| 20 |
18
|
simpri |
|
| 21 |
|
issdrg |
|
| 22 |
17 19 20 21
|
mpbir3an |
|
| 23 |
22
|
a1i |
|
| 24 |
|
nnon |
|
| 25 |
24
|
adantl |
|
| 26 |
1 25
|
constrsscn |
|
| 27 |
26
|
sselda |
|
| 28 |
27
|
snssd |
|
| 29 |
28
|
ad2antrr |
|
| 30 |
12 13 14 16 23 29
|
fldgenfldext |
|
| 31 |
30
|
ad2antrr |
|
| 32 |
|
extdgcl |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
simpr |
|
| 35 |
|
2z |
|
| 36 |
35
|
a1i |
|
| 37 |
|
simplr |
|
| 38 |
36 37
|
zexpcld |
|
| 39 |
34 38
|
eqeltrd |
|
| 40 |
39
|
zred |
|
| 41 |
|
xnn0xr |
|
| 42 |
31 32 41
|
3syl |
|
| 43 |
|
eqid |
|
| 44 |
|
simplr |
|
| 45 |
|
simprl |
|
| 46 |
45
|
oveq2d |
|
| 47 |
|
eqidd |
|
| 48 |
|
simpr |
|
| 49 |
48
|
fveq1d |
|
| 50 |
|
0fv |
|
| 51 |
50
|
a1i |
|
| 52 |
49 51
|
eqtrd |
|
| 53 |
45
|
adantr |
|
| 54 |
|
1nn |
|
| 55 |
|
nnq |
|
| 56 |
54 55
|
ax-mp |
|
| 57 |
56
|
ne0ii |
|
| 58 |
57
|
a1i |
|
| 59 |
53 58
|
eqnetrd |
|
| 60 |
59
|
neneqd |
|
| 61 |
52 60
|
pm2.65da |
|
| 62 |
61
|
neqned |
|
| 63 |
44 62
|
hashne0 |
|
| 64 |
2 3 4 44 16 46 47 63
|
fldext2chn |
|
| 65 |
64
|
simpld |
|
| 66 |
|
fldextfld1 |
|
| 67 |
65 66
|
syl |
|
| 68 |
44
|
chnwrd |
|
| 69 |
|
lswcl |
|
| 70 |
68 62 69
|
syl2anc |
|
| 71 |
17
|
a1i |
|
| 72 |
|
qsscn |
|
| 73 |
72
|
a1i |
|
| 74 |
73 28
|
unssd |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
12 71 75
|
fldgensdrg |
|
| 77 |
13
|
qrngbas |
|
| 78 |
77 65
|
fldextsdrg |
|
| 79 |
43
|
sdrgss |
|
| 80 |
78 79
|
syl |
|
| 81 |
12
|
sdrgss |
|
| 82 |
70 81
|
syl |
|
| 83 |
|
eqid |
|
| 84 |
83 12
|
ressbas2 |
|
| 85 |
82 84
|
syl |
|
| 86 |
80 85
|
sseqtrrd |
|
| 87 |
|
simprr |
|
| 88 |
|
simpllr |
|
| 89 |
87 88
|
sseldd |
|
| 90 |
89
|
snssd |
|
| 91 |
86 90
|
unssd |
|
| 92 |
12 71 70 91
|
fldgenssp |
|
| 93 |
|
id |
|
| 94 |
83 93
|
subsdrg |
|
| 95 |
94
|
biimpar |
|
| 96 |
70 76 92 95
|
syl12anc |
|
| 97 |
43 67 96
|
sdrgfldext |
|
| 98 |
70
|
elexd |
|
| 99 |
|
ressabs |
|
| 100 |
98 92 99
|
syl2anc |
|
| 101 |
97 100
|
breqtrd |
|
| 102 |
101
|
ad2antrr |
|
| 103 |
|
extdgcl |
|
| 104 |
102 103
|
syl |
|
| 105 |
|
xnn0xr |
|
| 106 |
104 105
|
syl |
|
| 107 |
|
extdggt0 |
|
| 108 |
102 107
|
syl |
|
| 109 |
|
extdgmul |
|
| 110 |
101 30 109
|
syl2anc |
|
| 111 |
110
|
ad2antrr |
|
| 112 |
|
xmulcom |
|
| 113 |
106 42 112
|
syl2anc |
|
| 114 |
111 113
|
eqtrd |
|
| 115 |
40 42 106 108 114
|
rexmul2 |
|
| 116 |
|
extdggt0 |
|
| 117 |
31 116
|
syl |
|
| 118 |
33 115 117
|
xnn0nnd |
|
| 119 |
11 118
|
eqeltrid |
|
| 120 |
40 106 42 117 111
|
rexmul2 |
|
| 121 |
104 120
|
xnn0nn0d |
|
| 122 |
121
|
nn0zd |
|
| 123 |
118
|
nnnn0d |
|
| 124 |
123
|
nn0zd |
|
| 125 |
|
rexmul |
|
| 126 |
120 115 125
|
syl2anc |
|
| 127 |
111 126
|
eqtrd |
|
| 128 |
127
|
eqcomd |
|
| 129 |
128 34
|
eqtrd |
|
| 130 |
|
dvds0lem |
|
| 131 |
122 124 38 129 130
|
syl31anc |
|
| 132 |
11 131
|
eqbrtrid |
|
| 133 |
|
dvdsprmpweq |
|
| 134 |
133
|
imp |
|
| 135 |
10 119 37 132 134
|
syl31anc |
|
| 136 |
64
|
simprd |
|
| 137 |
135 136
|
r19.29a |
|
| 138 |
|
simplr |
|
| 139 |
1 2 3 4 138
|
constrextdg2 |
|
| 140 |
137 139
|
r19.29a |
|
| 141 |
1
|
isconstr |
|
| 142 |
8 141
|
sylib |
|
| 143 |
140 142
|
r19.29a |
|