| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmrn.1 |
|
| 2 |
|
cycpmrn.2 |
|
| 3 |
|
cycpmrn.3 |
|
| 4 |
|
cycpmrn.4 |
|
| 5 |
|
cycpmrn.5 |
|
| 6 |
4
|
ad4antr |
|
| 7 |
|
simpllr |
|
| 8 |
|
fzo0ss1 |
|
| 9 |
|
simpr |
|
| 10 |
|
lencl |
|
| 11 |
3 10
|
syl |
|
| 12 |
11
|
ad4antr |
|
| 13 |
12
|
nn0zd |
|
| 14 |
|
1zzd |
|
| 15 |
|
fzoaddel2 |
|
| 16 |
9 13 14 15
|
syl3anc |
|
| 17 |
8 16
|
sselid |
|
| 18 |
3
|
ad4antr |
|
| 19 |
|
wrddm |
|
| 20 |
18 19
|
syl |
|
| 21 |
17 20
|
eleqtrrd |
|
| 22 |
|
fzossz |
|
| 23 |
22 9
|
sselid |
|
| 24 |
23
|
zred |
|
| 25 |
24
|
ltp1d |
|
| 26 |
24 25
|
ltned |
|
| 27 |
|
f1veqaeq |
|
| 28 |
27
|
necon3d |
|
| 29 |
28
|
anassrs |
|
| 30 |
29
|
imp |
|
| 31 |
6 7 21 26 30
|
syl1111anc |
|
| 32 |
2
|
ad4antr |
|
| 33 |
1 32 18 6 9
|
cycpmfv1 |
|
| 34 |
31 33
|
neeqtrrd |
|
| 35 |
34
|
necomd |
|
| 36 |
|
simplr |
|
| 37 |
36
|
fveq2d |
|
| 38 |
35 37 36
|
3netr4d |
|
| 39 |
4
|
ad4antr |
|
| 40 |
3
|
ad3antrrr |
|
| 41 |
|
eldmne0 |
|
| 42 |
41
|
ad2antlr |
|
| 43 |
|
lennncl |
|
| 44 |
40 42 43
|
syl2anc |
|
| 45 |
|
lbfzo0 |
|
| 46 |
44 45
|
sylibr |
|
| 47 |
40 19
|
syl |
|
| 48 |
46 47
|
eleqtrrd |
|
| 49 |
48
|
adantr |
|
| 50 |
|
simpllr |
|
| 51 |
|
0red |
|
| 52 |
|
1red |
|
| 53 |
11
|
nn0red |
|
| 54 |
52 53
|
posdifd |
|
| 55 |
5 54
|
mpbid |
|
| 56 |
51 55
|
ltned |
|
| 57 |
56
|
ad4antr |
|
| 58 |
|
simpr |
|
| 59 |
57 58
|
neeqtrrd |
|
| 60 |
|
f1veqaeq |
|
| 61 |
60
|
necon3d |
|
| 62 |
61
|
anassrs |
|
| 63 |
62
|
imp |
|
| 64 |
39 49 50 59 63
|
syl1111anc |
|
| 65 |
|
simplr |
|
| 66 |
65
|
fveq2d |
|
| 67 |
2
|
ad4antr |
|
| 68 |
3
|
ad4antr |
|
| 69 |
44
|
nngt0d |
|
| 70 |
69
|
adantr |
|
| 71 |
1 67 68 39 70 58
|
cycpmfv2 |
|
| 72 |
66 71
|
eqtrd |
|
| 73 |
64 72 65
|
3netr4d |
|
| 74 |
|
simplr |
|
| 75 |
74 47
|
eleqtrd |
|
| 76 |
|
0z |
|
| 77 |
|
0p1e1 |
|
| 78 |
77
|
fveq2i |
|
| 79 |
|
nnuz |
|
| 80 |
78 79
|
eqtr4i |
|
| 81 |
44 80
|
eleqtrrdi |
|
| 82 |
|
fzosplitsnm1 |
|
| 83 |
76 81 82
|
sylancr |
|
| 84 |
75 83
|
eleqtrd |
|
| 85 |
|
elun |
|
| 86 |
84 85
|
sylib |
|
| 87 |
|
velsn |
|
| 88 |
87
|
orbi2i |
|
| 89 |
86 88
|
sylib |
|
| 90 |
38 73 89
|
mpjaodan |
|
| 91 |
|
f1fun |
|
| 92 |
|
elrnrexdmb |
|
| 93 |
4 91 92
|
3syl |
|
| 94 |
93
|
biimpa |
|
| 95 |
90 94
|
r19.29a |
|
| 96 |
|
eqid |
|
| 97 |
1 2 3 4 96
|
cycpmcl |
|
| 98 |
|
eqid |
|
| 99 |
96 98
|
elsymgbas |
|
| 100 |
2 99
|
syl |
|
| 101 |
97 100
|
mpbid |
|
| 102 |
|
f1ofn |
|
| 103 |
101 102
|
syl |
|
| 104 |
103
|
adantr |
|
| 105 |
|
wrdf |
|
| 106 |
|
frn |
|
| 107 |
3 105 106
|
3syl |
|
| 108 |
107
|
sselda |
|
| 109 |
|
fnelnfp |
|
| 110 |
104 108 109
|
syl2anc |
|
| 111 |
95 110
|
mpbird |
|
| 112 |
111
|
ex |
|
| 113 |
112
|
ssrdv |
|
| 114 |
1 2 3 4
|
tocycfv |
|
| 115 |
114
|
difeq1d |
|
| 116 |
115
|
dmeqd |
|
| 117 |
|
difundir |
|
| 118 |
|
resdifcom |
|
| 119 |
|
difid |
|
| 120 |
119
|
reseq1i |
|
| 121 |
|
0res |
|
| 122 |
118 120 121
|
3eqtri |
|
| 123 |
122
|
uneq1i |
|
| 124 |
|
0un |
|
| 125 |
117 123 124
|
3eqtri |
|
| 126 |
125
|
dmeqi |
|
| 127 |
|
difss |
|
| 128 |
|
dmss |
|
| 129 |
127 128
|
ax-mp |
|
| 130 |
|
dmcoss |
|
| 131 |
|
df-rn |
|
| 132 |
130 131
|
sseqtrri |
|
| 133 |
129 132
|
sstri |
|
| 134 |
126 133
|
eqsstri |
|
| 135 |
116 134
|
eqsstrdi |
|
| 136 |
113 135
|
eqssd |
|