Metamath Proof Explorer


Theorem dcubic2

Description: Reverse direction of dcubic . Given a solution U to the "substitution" quadratic equation X = U - M / U , show that X is in the desired form. (Contributed by Mario Carneiro, 25-Apr-2015)

Ref Expression
Hypotheses dcubic.c φP
dcubic.d φQ
dcubic.x φX
dcubic.t φT
dcubic.3 φT3=GN
dcubic.g φG
dcubic.2 φG2=N2+M3
dcubic.m φM=P3
dcubic.n φN=Q2
dcubic.0 φT0
dcubic2.u φU
dcubic2.z φU0
dcubic2.2 φX=UMU
dcubic2.x φX3+PX+Q=0
Assertion dcubic2 φrr3=1X=rTMrT

Proof

Step Hyp Ref Expression
1 dcubic.c φP
2 dcubic.d φQ
3 dcubic.x φX
4 dcubic.t φT
5 dcubic.3 φT3=GN
6 dcubic.g φG
7 dcubic.2 φG2=N2+M3
8 dcubic.m φM=P3
9 dcubic.n φN=Q2
10 dcubic.0 φT0
11 dcubic2.u φU
12 dcubic2.z φU0
13 dcubic2.2 φX=UMU
14 dcubic2.x φX3+PX+Q=0
15 11 4 10 divcld φUT
16 15 adantr φU3=GNUT
17 3nn0 30
18 17 a1i φ30
19 11 4 10 18 expdivd φUT3=U3T3
20 19 adantr φU3=GNUT3=U3T3
21 oveq1 U3=GNU3T3=GNT3
22 5 oveq1d φT3T3=GNT3
23 expcl T30T3
24 4 17 23 sylancl φT3
25 3z 3
26 25 a1i φ3
27 4 10 26 expne0d φT30
28 24 27 dividd φT3T3=1
29 22 28 eqtr3d φGNT3=1
30 21 29 sylan9eqr φU3=GNU3T3=1
31 20 30 eqtrd φU3=GNUT3=1
32 11 4 10 divcan1d φUTT=U
33 32 oveq2d φMUTT=MU
34 32 33 oveq12d φUTTMUTT=UMU
35 13 34 eqtr4d φX=UTTMUTT
36 35 adantr φU3=GNX=UTTMUTT
37 oveq1 r=UTr3=UT3
38 37 eqeq1d r=UTr3=1UT3=1
39 oveq1 r=UTrT=UTT
40 39 oveq2d r=UTMrT=MUTT
41 39 40 oveq12d r=UTrTMrT=UTTMUTT
42 41 eqeq2d r=UTX=rTMrTX=UTTMUTT
43 38 42 anbi12d r=UTr3=1X=rTMrTUT3=1X=UTTMUTT
44 43 rspcev UTUT3=1X=UTTMUTTrr3=1X=rTMrT
45 16 31 36 44 syl12anc φU3=GNrr3=1X=rTMrT
46 3cn 3
47 46 a1i φ3
48 3ne0 30
49 48 a1i φ30
50 1 47 49 divcld φP3
51 8 50 eqeltrd φM
52 51 11 12 divcld φMU
53 52 negcld φMU
54 53 4 10 divcld φMUT
55 54 adantr φU3=G+NMUT
56 53 4 10 18 expdivd φMUT3=MU3T3
57 51 11 12 divnegd φMU=MU
58 57 oveq1d φMU3=MU3
59 51 negcld φM
60 59 11 12 18 expdivd φMU3=M3U3
61 5 oveq2d φG+NT3=G+NGN
62 2 halfcld φQ2
63 9 62 eqeltrd φN
64 subsq GNG2N2=G+NGN
65 6 63 64 syl2anc φG2N2=G+NGN
66 61 65 eqtr4d φG+NT3=G2N2
67 7 oveq1d φG2N2=N2+M3-N2
68 63 sqcld φN2
69 expcl M30M3
70 51 17 69 sylancl φM3
71 68 70 pncan2d φN2+M3-N2=M3
72 66 67 71 3eqtrd φG+NT3=M3
73 72 negeqd φG+NT3=M3
74 6 63 addcld φG+N
75 74 24 mulneg1d φG+NT3=G+NT3
76 3nn 3
77 76 a1i φ3
78 n2dvds3 ¬23
79 78 a1i φ¬23
80 oexpneg M3¬23M3=M3
81 51 77 79 80 syl3anc φM3=M3
82 73 75 81 3eqtr4d φG+NT3=M3
83 82 oveq1d φG+NT3U3=M3U3
84 74 negcld φG+N
85 expcl U30U3
86 11 17 85 sylancl φU3
87 11 12 26 expne0d φU30
88 84 24 86 87 div23d φG+NT3U3=G+NU3T3
89 83 88 eqtr3d φM3U3=G+NU3T3
90 58 60 89 3eqtrd φMU3=G+NU3T3
91 90 oveq1d φMU3T3=G+NU3T3T3
92 84 86 87 divcld φG+NU3
93 92 24 27 divcan4d φG+NU3T3T3=G+NU3
94 56 91 93 3eqtrd φMUT3=G+NU3
95 94 adantr φU3=G+NMUT3=G+NU3
96 oveq1 U3=G+NU3U3=G+NU3
97 96 eqcomd U3=G+NG+NU3=U3U3
98 86 87 dividd φU3U3=1
99 97 98 sylan9eqr φU3=G+NG+NU3=1
100 95 99 eqtrd φU3=G+NMUT3=1
101 52 11 neg2subd φ-MU-U=UMU
102 13 101 eqtr4d φX=-MU-U
103 102 adantr φU3=G+NX=-MU-U
104 53 4 10 divcan1d φMUTT=MU
105 104 adantr φU3=G+NMUTT=MU
106 51 11 12 divneg2d φMU=MU
107 104 106 eqtrd φMUTT=MU
108 107 adantr φU3=G+NMUTT=MU
109 108 oveq2d φU3=G+NMMUTT=MMU
110 51 adantr φU3=G+NM
111 11 negcld φU
112 111 adantr φU3=G+NU
113 75 73 eqtrd φG+NT3=M3
114 113 adantr φU3=G+NG+NT3=M3
115 84 adantr φU3=G+NG+N
116 24 adantr φU3=G+NT3
117 simpr φU3=G+NU3=G+N
118 87 adantr φU3=G+NU30
119 117 118 eqnetrrd φU3=G+NG+N0
120 27 adantr φU3=G+NT30
121 115 116 119 120 mulne0d φU3=G+NG+NT30
122 114 121 eqnetrrd φU3=G+NM30
123 oveq1 M=0M3=03
124 0exp 303=0
125 76 124 ax-mp 03=0
126 123 125 eqtrdi M=0M3=0
127 126 negeqd M=0M3=0
128 neg0 0=0
129 127 128 eqtrdi M=0M3=0
130 129 necon3i M30M0
131 122 130 syl φU3=G+NM0
132 11 12 negne0d φU0
133 132 adantr φU3=G+NU0
134 110 112 131 133 ddcand φU3=G+NMMU=U
135 109 134 eqtrd φU3=G+NMMUTT=U
136 105 135 oveq12d φU3=G+NMUTTMMUTT=-MU-U
137 103 136 eqtr4d φU3=G+NX=MUTTMMUTT
138 oveq1 r=MUTr3=MUT3
139 138 eqeq1d r=MUTr3=1MUT3=1
140 oveq1 r=MUTrT=MUTT
141 140 oveq2d r=MUTMrT=MMUTT
142 140 141 oveq12d r=MUTrTMrT=MUTTMMUTT
143 142 eqeq2d r=MUTX=rTMrTX=MUTTMMUTT
144 139 143 anbi12d r=MUTr3=1X=rTMrTMUT3=1X=MUTTMMUTT
145 144 rspcev MUTMUT3=1X=MUTTMMUTTrr3=1X=rTMrT
146 55 100 137 145 syl12anc φU3=G+Nrr3=1X=rTMrT
147 86 sqcld φU32
148 147 mullidd φ1U32=U32
149 2 86 mulcld φQU3
150 149 70 negsubd φQU3+M3=QU3M3
151 148 150 oveq12d φ1U32+QU3+M3=U32+QU3-M3
152 1 2 3 4 5 6 7 8 9 10 11 12 13 dcubic1lem φX3+PX+Q=0U32+QU3-M3=0
153 14 152 mpbid φU32+QU3-M3=0
154 151 153 eqtrd φ1U32+QU3+M3=0
155 1cnd φ1
156 ax-1ne0 10
157 156 a1i φ10
158 70 negcld φM3
159 2cn 2
160 mulcl 2G2G
161 159 6 160 sylancr φ2G
162 sqmul 2G2G2=22G2
163 159 6 162 sylancr φ2G2=22G2
164 7 oveq2d φ22G2=22N2+M3
165 159 sqcli 22
166 mulcl 22N222N2
167 165 68 166 sylancr φ22N2
168 mulcl 22M322M3
169 165 70 168 sylancr φ22M3
170 167 169 subnegd φ22N222M3=22N2+22M3
171 9 oveq2d φ2 N=2Q2
172 159 a1i φ2
173 2ne0 20
174 173 a1i φ20
175 2 172 174 divcan2d φ2Q2=Q
176 171 175 eqtrd φ2 N=Q
177 176 oveq1d φ2 N2=Q2
178 sqmul 2N2 N2=22N2
179 159 63 178 sylancr φ2 N2=22N2
180 177 179 eqtr3d φQ2=22N2
181 158 mullidd φ1M3=M3
182 181 oveq2d φ41M3=4M3
183 4cn 4
184 mulneg2 4M34M3=4M3
185 183 70 184 sylancr φ4M3=4M3
186 182 185 eqtrd φ41M3=4M3
187 sq2 22=4
188 187 oveq1i 22M3=4M3
189 188 negeqi 22M3=4M3
190 186 189 eqtr4di φ41M3=22M3
191 180 190 oveq12d φQ241M3=22N222M3
192 165 a1i φ22
193 192 68 70 adddid φ22N2+M3=22N2+22M3
194 170 191 193 3eqtr4rd φ22N2+M3=Q241M3
195 163 164 194 3eqtrd φ2G2=Q241M3
196 155 157 2 158 86 161 195 quad2 φ1U32+QU3+M3=0U3=-Q+2G21U3=-Q-2G21
197 154 196 mpbid φU3=-Q+2G21U3=-Q-2G21
198 2t1e2 21=2
199 198 oveq2i -Q+2G21=-Q+2G2
200 2 negcld φQ
201 200 161 172 174 divdird φ-Q+2G2=Q2+2G2
202 9 negeqd φN=Q2
203 2 172 174 divnegd φQ2=Q2
204 202 203 eqtr2d φQ2=N
205 6 172 174 divcan3d φ2G2=G
206 204 205 oveq12d φQ2+2G2=-N+G
207 63 negcld φN
208 207 6 addcomd φ-N+G=G+- N
209 6 63 negsubd φG+- N=GN
210 208 209 eqtrd φ-N+G=GN
211 201 206 210 3eqtrd φ-Q+2G2=GN
212 199 211 eqtrid φ-Q+2G21=GN
213 212 eqeq2d φU3=-Q+2G21U3=GN
214 198 oveq2i -Q-2G21=-Q-2G2
215 204 205 oveq12d φQ22G2=-N-G
216 200 161 172 174 divsubdird φ-Q-2G2=Q22G2
217 6 63 addcomd φG+N=N+G
218 217 negeqd φG+N=N+G
219 63 6 negdi2d φN+G=-N-G
220 218 219 eqtrd φG+N=-N-G
221 215 216 220 3eqtr4d φ-Q-2G2=G+N
222 214 221 eqtrid φ-Q-2G21=G+N
223 222 eqeq2d φU3=-Q-2G21U3=G+N
224 213 223 orbi12d φU3=-Q+2G21U3=-Q-2G21U3=GNU3=G+N
225 197 224 mpbid φU3=GNU3=G+N
226 45 146 225 mpjaodan φrr3=1X=rTMrT