| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dcubic.c |
|
| 2 |
|
dcubic.d |
|
| 3 |
|
dcubic.x |
|
| 4 |
|
dcubic.t |
|
| 5 |
|
dcubic.3 |
|
| 6 |
|
dcubic.g |
|
| 7 |
|
dcubic.2 |
|
| 8 |
|
dcubic.m |
|
| 9 |
|
dcubic.n |
|
| 10 |
|
dcubic.0 |
|
| 11 |
|
dcubic2.u |
|
| 12 |
|
dcubic2.z |
|
| 13 |
|
dcubic2.2 |
|
| 14 |
|
dcubic2.x |
|
| 15 |
11 4 10
|
divcld |
|
| 16 |
15
|
adantr |
|
| 17 |
|
3nn0 |
|
| 18 |
17
|
a1i |
|
| 19 |
11 4 10 18
|
expdivd |
|
| 20 |
19
|
adantr |
|
| 21 |
|
oveq1 |
|
| 22 |
5
|
oveq1d |
|
| 23 |
|
expcl |
|
| 24 |
4 17 23
|
sylancl |
|
| 25 |
|
3z |
|
| 26 |
25
|
a1i |
|
| 27 |
4 10 26
|
expne0d |
|
| 28 |
24 27
|
dividd |
|
| 29 |
22 28
|
eqtr3d |
|
| 30 |
21 29
|
sylan9eqr |
|
| 31 |
20 30
|
eqtrd |
|
| 32 |
11 4 10
|
divcan1d |
|
| 33 |
32
|
oveq2d |
|
| 34 |
32 33
|
oveq12d |
|
| 35 |
13 34
|
eqtr4d |
|
| 36 |
35
|
adantr |
|
| 37 |
|
oveq1 |
|
| 38 |
37
|
eqeq1d |
|
| 39 |
|
oveq1 |
|
| 40 |
39
|
oveq2d |
|
| 41 |
39 40
|
oveq12d |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
38 42
|
anbi12d |
|
| 44 |
43
|
rspcev |
|
| 45 |
16 31 36 44
|
syl12anc |
|
| 46 |
|
3cn |
|
| 47 |
46
|
a1i |
|
| 48 |
|
3ne0 |
|
| 49 |
48
|
a1i |
|
| 50 |
1 47 49
|
divcld |
|
| 51 |
8 50
|
eqeltrd |
|
| 52 |
51 11 12
|
divcld |
|
| 53 |
52
|
negcld |
|
| 54 |
53 4 10
|
divcld |
|
| 55 |
54
|
adantr |
|
| 56 |
53 4 10 18
|
expdivd |
|
| 57 |
51 11 12
|
divnegd |
|
| 58 |
57
|
oveq1d |
|
| 59 |
51
|
negcld |
|
| 60 |
59 11 12 18
|
expdivd |
|
| 61 |
5
|
oveq2d |
|
| 62 |
2
|
halfcld |
|
| 63 |
9 62
|
eqeltrd |
|
| 64 |
|
subsq |
|
| 65 |
6 63 64
|
syl2anc |
|
| 66 |
61 65
|
eqtr4d |
|
| 67 |
7
|
oveq1d |
|
| 68 |
63
|
sqcld |
|
| 69 |
|
expcl |
|
| 70 |
51 17 69
|
sylancl |
|
| 71 |
68 70
|
pncan2d |
|
| 72 |
66 67 71
|
3eqtrd |
|
| 73 |
72
|
negeqd |
|
| 74 |
6 63
|
addcld |
|
| 75 |
74 24
|
mulneg1d |
|
| 76 |
|
3nn |
|
| 77 |
76
|
a1i |
|
| 78 |
|
n2dvds3 |
|
| 79 |
78
|
a1i |
|
| 80 |
|
oexpneg |
|
| 81 |
51 77 79 80
|
syl3anc |
|
| 82 |
73 75 81
|
3eqtr4d |
|
| 83 |
82
|
oveq1d |
|
| 84 |
74
|
negcld |
|
| 85 |
|
expcl |
|
| 86 |
11 17 85
|
sylancl |
|
| 87 |
11 12 26
|
expne0d |
|
| 88 |
84 24 86 87
|
div23d |
|
| 89 |
83 88
|
eqtr3d |
|
| 90 |
58 60 89
|
3eqtrd |
|
| 91 |
90
|
oveq1d |
|
| 92 |
84 86 87
|
divcld |
|
| 93 |
92 24 27
|
divcan4d |
|
| 94 |
56 91 93
|
3eqtrd |
|
| 95 |
94
|
adantr |
|
| 96 |
|
oveq1 |
|
| 97 |
96
|
eqcomd |
|
| 98 |
86 87
|
dividd |
|
| 99 |
97 98
|
sylan9eqr |
|
| 100 |
95 99
|
eqtrd |
|
| 101 |
52 11
|
neg2subd |
|
| 102 |
13 101
|
eqtr4d |
|
| 103 |
102
|
adantr |
|
| 104 |
53 4 10
|
divcan1d |
|
| 105 |
104
|
adantr |
|
| 106 |
51 11 12
|
divneg2d |
|
| 107 |
104 106
|
eqtrd |
|
| 108 |
107
|
adantr |
|
| 109 |
108
|
oveq2d |
|
| 110 |
51
|
adantr |
|
| 111 |
11
|
negcld |
|
| 112 |
111
|
adantr |
|
| 113 |
75 73
|
eqtrd |
|
| 114 |
113
|
adantr |
|
| 115 |
84
|
adantr |
|
| 116 |
24
|
adantr |
|
| 117 |
|
simpr |
|
| 118 |
87
|
adantr |
|
| 119 |
117 118
|
eqnetrrd |
|
| 120 |
27
|
adantr |
|
| 121 |
115 116 119 120
|
mulne0d |
|
| 122 |
114 121
|
eqnetrrd |
|
| 123 |
|
oveq1 |
|
| 124 |
|
0exp |
|
| 125 |
76 124
|
ax-mp |
|
| 126 |
123 125
|
eqtrdi |
|
| 127 |
126
|
negeqd |
|
| 128 |
|
neg0 |
|
| 129 |
127 128
|
eqtrdi |
|
| 130 |
129
|
necon3i |
|
| 131 |
122 130
|
syl |
|
| 132 |
11 12
|
negne0d |
|
| 133 |
132
|
adantr |
|
| 134 |
110 112 131 133
|
ddcand |
|
| 135 |
109 134
|
eqtrd |
|
| 136 |
105 135
|
oveq12d |
|
| 137 |
103 136
|
eqtr4d |
|
| 138 |
|
oveq1 |
|
| 139 |
138
|
eqeq1d |
|
| 140 |
|
oveq1 |
|
| 141 |
140
|
oveq2d |
|
| 142 |
140 141
|
oveq12d |
|
| 143 |
142
|
eqeq2d |
|
| 144 |
139 143
|
anbi12d |
|
| 145 |
144
|
rspcev |
|
| 146 |
55 100 137 145
|
syl12anc |
|
| 147 |
86
|
sqcld |
|
| 148 |
147
|
mullidd |
|
| 149 |
2 86
|
mulcld |
|
| 150 |
149 70
|
negsubd |
|
| 151 |
148 150
|
oveq12d |
|
| 152 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
dcubic1lem |
|
| 153 |
14 152
|
mpbid |
|
| 154 |
151 153
|
eqtrd |
|
| 155 |
|
1cnd |
|
| 156 |
|
ax-1ne0 |
|
| 157 |
156
|
a1i |
|
| 158 |
70
|
negcld |
|
| 159 |
|
2cn |
|
| 160 |
|
mulcl |
|
| 161 |
159 6 160
|
sylancr |
|
| 162 |
|
sqmul |
|
| 163 |
159 6 162
|
sylancr |
|
| 164 |
7
|
oveq2d |
|
| 165 |
159
|
sqcli |
|
| 166 |
|
mulcl |
|
| 167 |
165 68 166
|
sylancr |
|
| 168 |
|
mulcl |
|
| 169 |
165 70 168
|
sylancr |
|
| 170 |
167 169
|
subnegd |
|
| 171 |
9
|
oveq2d |
|
| 172 |
159
|
a1i |
|
| 173 |
|
2ne0 |
|
| 174 |
173
|
a1i |
|
| 175 |
2 172 174
|
divcan2d |
|
| 176 |
171 175
|
eqtrd |
|
| 177 |
176
|
oveq1d |
|
| 178 |
|
sqmul |
|
| 179 |
159 63 178
|
sylancr |
|
| 180 |
177 179
|
eqtr3d |
|
| 181 |
158
|
mullidd |
|
| 182 |
181
|
oveq2d |
|
| 183 |
|
4cn |
|
| 184 |
|
mulneg2 |
|
| 185 |
183 70 184
|
sylancr |
|
| 186 |
182 185
|
eqtrd |
|
| 187 |
|
sq2 |
|
| 188 |
187
|
oveq1i |
|
| 189 |
188
|
negeqi |
|
| 190 |
186 189
|
eqtr4di |
|
| 191 |
180 190
|
oveq12d |
|
| 192 |
165
|
a1i |
|
| 193 |
192 68 70
|
adddid |
|
| 194 |
170 191 193
|
3eqtr4rd |
|
| 195 |
163 164 194
|
3eqtrd |
|
| 196 |
155 157 2 158 86 161 195
|
quad2 |
|
| 197 |
154 196
|
mpbid |
|
| 198 |
|
2t1e2 |
|
| 199 |
198
|
oveq2i |
|
| 200 |
2
|
negcld |
|
| 201 |
200 161 172 174
|
divdird |
|
| 202 |
9
|
negeqd |
|
| 203 |
2 172 174
|
divnegd |
|
| 204 |
202 203
|
eqtr2d |
|
| 205 |
6 172 174
|
divcan3d |
|
| 206 |
204 205
|
oveq12d |
|
| 207 |
63
|
negcld |
|
| 208 |
207 6
|
addcomd |
|
| 209 |
6 63
|
negsubd |
|
| 210 |
208 209
|
eqtrd |
|
| 211 |
201 206 210
|
3eqtrd |
|
| 212 |
199 211
|
eqtrid |
|
| 213 |
212
|
eqeq2d |
|
| 214 |
198
|
oveq2i |
|
| 215 |
204 205
|
oveq12d |
|
| 216 |
200 161 172 174
|
divsubdird |
|
| 217 |
6 63
|
addcomd |
|
| 218 |
217
|
negeqd |
|
| 219 |
63 6
|
negdi2d |
|
| 220 |
218 219
|
eqtrd |
|
| 221 |
215 216 220
|
3eqtr4d |
|
| 222 |
214 221
|
eqtrid |
|
| 223 |
222
|
eqeq2d |
|
| 224 |
213 223
|
orbi12d |
|
| 225 |
197 224
|
mpbid |
|
| 226 |
45 146 225
|
mpjaodan |
|