Metamath Proof Explorer


Theorem decpmatmul

Description: The matrix consisting of the coefficients in the polynomial entries of the product of two polynomial matrices is a sum of products of the matrices consisting of the coefficients in the polynomial entries of the polynomial matrices for the same power. (Contributed by AV, 21-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmatmul.p P=Poly1R
decpmatmul.c C=NMatP
decpmatmul.b B=BaseC
decpmatmul.a A=NMatR
Assertion decpmatmul RRingUBWBK0UCWdecompPMatK=Ak=0KUdecompPMatkAWdecompPMatKk

Proof

Step Hyp Ref Expression
1 decpmatmul.p P=Poly1R
2 decpmatmul.c C=NMatP
3 decpmatmul.b B=BaseC
4 decpmatmul.a A=NMatR
5 eqidd RRingUBWBK0iNjNxN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKky=xN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKky
6 oveq1 x=ixUdecompPMatkt=iUdecompPMatkt
7 oveq2 y=jtWdecompPMatKky=tWdecompPMatKkj
8 6 7 oveqan12d x=iy=jxUdecompPMatktRtWdecompPMatKky=iUdecompPMatktRtWdecompPMatKkj
9 8 mpteq2dv x=iy=jtNxUdecompPMatktRtWdecompPMatKky=tNiUdecompPMatktRtWdecompPMatKkj
10 9 oveq2d x=iy=jRtNxUdecompPMatktRtWdecompPMatKky=RtNiUdecompPMatktRtWdecompPMatKkj
11 10 mpteq2dv x=iy=jk0KRtNxUdecompPMatktRtWdecompPMatKky=k0KRtNiUdecompPMatktRtWdecompPMatKkj
12 11 oveq2d x=iy=jRk=0KRtNxUdecompPMatktRtWdecompPMatKky=Rk=0KRtNiUdecompPMatktRtWdecompPMatKkj
13 12 adantl RRingUBWBK0iNjNx=iy=jRk=0KRtNxUdecompPMatktRtWdecompPMatKky=Rk=0KRtNiUdecompPMatktRtWdecompPMatKkj
14 simprl RRingUBWBK0iNjNiN
15 simprr RRingUBWBK0iNjNjN
16 ovexd RRingUBWBK0iNjNRk=0KRtNiUdecompPMatktRtWdecompPMatKkjV
17 5 13 14 15 16 ovmpod RRingUBWBK0iNjNixN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKkyj=Rk=0KRtNiUdecompPMatktRtWdecompPMatKkj
18 2 3 matrcl UBNFinPV
19 18 simpld UBNFin
20 19 adantr UBWBNFin
21 20 anim2i RRingUBWBRRingNFin
22 21 ancomd RRingUBWBNFinRRing
23 22 3adant3 RRingUBWBK0NFinRRing
24 eqid RmaMulNNN=RmaMulNNN
25 4 24 matmulr NFinRRingRmaMulNNN=A
26 23 25 syl RRingUBWBK0RmaMulNNN=A
27 26 adantr RRingUBWBK0iNjNRmaMulNNN=A
28 27 adantr RRingUBWBK0iNjNk0KRmaMulNNN=A
29 28 eqcomd RRingUBWBK0iNjNk0KA=RmaMulNNN
30 29 oveqd RRingUBWBK0iNjNk0KUdecompPMatkAWdecompPMatKk=UdecompPMatkRmaMulNNNWdecompPMatKk
31 eqid BaseR=BaseR
32 eqid R=R
33 simp1 RRingUBWBK0RRing
34 33 adantr RRingUBWBK0iNjNRRing
35 34 adantr RRingUBWBK0iNjNk0KRRing
36 23 simpld RRingUBWBK0NFin
37 36 adantr RRingUBWBK0iNjNNFin
38 37 adantr RRingUBWBK0iNjNk0KNFin
39 simpl2l RRingUBWBK0iNjNUB
40 39 adantr RRingUBWBK0iNjNk0KUB
41 elfznn0 k0Kk0
42 41 adantl RRingUBWBK0iNjNk0Kk0
43 35 40 42 3jca RRingUBWBK0iNjNk0KRRingUBk0
44 eqid BaseA=BaseA
45 1 2 3 4 44 decpmatcl RRingUBk0UdecompPMatkBaseA
46 43 45 syl RRingUBWBK0iNjNk0KUdecompPMatkBaseA
47 4 31 44 matbas2i UdecompPMatkBaseAUdecompPMatkBaseRN×N
48 46 47 syl RRingUBWBK0iNjNk0KUdecompPMatkBaseRN×N
49 simpl2r RRingUBWBK0iNjNWB
50 49 adantr RRingUBWBK0iNjNk0KWB
51 fznn0sub k0KKk0
52 51 adantl RRingUBWBK0iNjNk0KKk0
53 35 50 52 3jca RRingUBWBK0iNjNk0KRRingWBKk0
54 1 2 3 4 44 decpmatcl RRingWBKk0WdecompPMatKkBaseA
55 53 54 syl RRingUBWBK0iNjNk0KWdecompPMatKkBaseA
56 4 31 44 matbas2i WdecompPMatKkBaseAWdecompPMatKkBaseRN×N
57 55 56 syl RRingUBWBK0iNjNk0KWdecompPMatKkBaseRN×N
58 24 31 32 35 38 38 38 48 57 mamuval RRingUBWBK0iNjNk0KUdecompPMatkRmaMulNNNWdecompPMatKk=xN,yNRtNxUdecompPMatktRtWdecompPMatKky
59 30 58 eqtrd RRingUBWBK0iNjNk0KUdecompPMatkAWdecompPMatKk=xN,yNRtNxUdecompPMatktRtWdecompPMatKky
60 59 mpteq2dva RRingUBWBK0iNjNk0KUdecompPMatkAWdecompPMatKk=k0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky
61 60 oveq2d RRingUBWBK0iNjNAk=0KUdecompPMatkAWdecompPMatKk=Ak=0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky
62 eqid 0A=0A
63 ovexd RRingUBWBK0iNjN0KV
64 ringcmn RRingRCMnd
65 33 64 syl RRingUBWBK0RCMnd
66 65 adantr RRingUBWBK0iNjNRCMnd
67 66 adantr RRingUBWBK0iNjNk0KRCMnd
68 67 3ad2ant1 RRingUBWBK0iNjNk0KxNyNRCMnd
69 38 3ad2ant1 RRingUBWBK0iNjNk0KxNyNNFin
70 35 3ad2ant1 RRingUBWBK0iNjNk0KxNyNRRing
71 70 adantr RRingUBWBK0iNjNk0KxNyNtNRRing
72 simpl2 RRingUBWBK0iNjNk0KxNyNtNxN
73 simpr RRingUBWBK0iNjNk0KxNyNtNtN
74 43 3ad2ant1 RRingUBWBK0iNjNk0KxNyNRRingUBk0
75 74 adantr RRingUBWBK0iNjNk0KxNyNtNRRingUBk0
76 75 45 syl RRingUBWBK0iNjNk0KxNyNtNUdecompPMatkBaseA
77 4 31 44 72 73 76 matecld RRingUBWBK0iNjNk0KxNyNtNxUdecompPMatktBaseR
78 simpl3 RRingUBWBK0iNjNk0KxNyNtNyN
79 55 3ad2ant1 RRingUBWBK0iNjNk0KxNyNWdecompPMatKkBaseA
80 79 adantr RRingUBWBK0iNjNk0KxNyNtNWdecompPMatKkBaseA
81 4 31 44 73 78 80 matecld RRingUBWBK0iNjNk0KxNyNtNtWdecompPMatKkyBaseR
82 31 32 ringcl RRingxUdecompPMatktBaseRtWdecompPMatKkyBaseRxUdecompPMatktRtWdecompPMatKkyBaseR
83 71 77 81 82 syl3anc RRingUBWBK0iNjNk0KxNyNtNxUdecompPMatktRtWdecompPMatKkyBaseR
84 83 ralrimiva RRingUBWBK0iNjNk0KxNyNtNxUdecompPMatktRtWdecompPMatKkyBaseR
85 31 68 69 84 gsummptcl RRingUBWBK0iNjNk0KxNyNRtNxUdecompPMatktRtWdecompPMatKkyBaseR
86 4 31 44 38 35 85 matbas2d RRingUBWBK0iNjNk0KxN,yNRtNxUdecompPMatktRtWdecompPMatKkyBaseA
87 eqid k0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky=k0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky
88 fzfid RRingUBWBK0iNjN0KFin
89 simpl NFinPVNFin
90 89 89 jca NFinPVNFinNFin
91 18 90 syl UBNFinNFin
92 91 adantr UBWBNFinNFin
93 92 3ad2ant2 RRingUBWBK0NFinNFin
94 93 adantr RRingUBWBK0iNjNNFinNFin
95 94 adantr RRingUBWBK0iNjNk0KNFinNFin
96 mpoexga NFinNFinxN,yNRtNxUdecompPMatktRtWdecompPMatKkyV
97 95 96 syl RRingUBWBK0iNjNk0KxN,yNRtNxUdecompPMatktRtWdecompPMatKkyV
98 fvexd RRingUBWBK0iNjN0AV
99 87 88 97 98 fsuppmptdm RRingUBWBK0iNjNfinSupp0Ak0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky
100 4 44 62 37 63 34 86 99 matgsum RRingUBWBK0iNjNAk=0KxN,yNRtNxUdecompPMatktRtWdecompPMatKky=xN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKky
101 61 100 eqtrd RRingUBWBK0iNjNAk=0KUdecompPMatkAWdecompPMatKk=xN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKky
102 101 oveqd RRingUBWBK0iNjNiAk=0KUdecompPMatkAWdecompPMatKkj=ixN,yNRk=0KRtNxUdecompPMatktRtWdecompPMatKkyj
103 simpl2 RRingUBWBK0iNjNUBWB
104 simpl3 RRingUBWBK0iNjNK0
105 1 2 3 decpmatmullem NFinRRingUBWBiNjNK0iUCWdecompPMatKj=RtNRk=0Kcoe1iUtkRcoe1tWjKk
106 37 34 103 14 15 104 105 syl213anc RRingUBWBK0iNjNiUCWdecompPMatKj=RtNRk=0Kcoe1iUtkRcoe1tWjKk
107 simpll1 RRingUBWBK0iNjNtNk0KRRing
108 simplrl RRingUBWBK0iNjNtNk0KiN
109 simprl RRingUBWBK0iNjNtNk0KtN
110 3 eleq2i UBUBaseC
111 110 biimpi UBUBaseC
112 111 adantr UBWBUBaseC
113 112 3ad2ant2 RRingUBWBK0UBaseC
114 113 adantr RRingUBWBK0iNjNUBaseC
115 114 adantr RRingUBWBK0iNjNtNk0KUBaseC
116 eqid BaseP=BaseP
117 2 116 matecl iNtNUBaseCiUtBaseP
118 108 109 115 117 syl3anc RRingUBWBK0iNjNtNk0KiUtBaseP
119 41 ad2antll RRingUBWBK0iNjNtNk0Kk0
120 eqid coe1iUt=coe1iUt
121 120 116 1 31 coe1fvalcl iUtBasePk0coe1iUtkBaseR
122 118 119 121 syl2anc RRingUBWBK0iNjNtNk0Kcoe1iUtkBaseR
123 simplrr RRingUBWBK0iNjNtNk0KjN
124 49 adantr RRingUBWBK0iNjNtNk0KWB
125 2 116 3 109 123 124 matecld RRingUBWBK0iNjNtNk0KtWjBaseP
126 51 ad2antll RRingUBWBK0iNjNtNk0KKk0
127 eqid coe1tWj=coe1tWj
128 127 116 1 31 coe1fvalcl tWjBasePKk0coe1tWjKkBaseR
129 125 126 128 syl2anc RRingUBWBK0iNjNtNk0Kcoe1tWjKkBaseR
130 31 32 ringcl RRingcoe1iUtkBaseRcoe1tWjKkBaseRcoe1iUtkRcoe1tWjKkBaseR
131 107 122 129 130 syl3anc RRingUBWBK0iNjNtNk0Kcoe1iUtkRcoe1tWjKkBaseR
132 31 66 37 88 131 gsumcom3fi RRingUBWBK0iNjNRtNRk=0Kcoe1iUtkRcoe1tWjKk=Rk=0KRtNcoe1iUtkRcoe1tWjKk
133 14 adantr RRingUBWBK0iNjNk0KiN
134 133 anim1i RRingUBWBK0iNjNk0KtNiNtN
135 1 2 3 decpmate RRingUBk0iNtNiUdecompPMatkt=coe1iUtk
136 43 134 135 syl2an2r RRingUBWBK0iNjNk0KtNiUdecompPMatkt=coe1iUtk
137 simplrr RRingUBWBK0iNjNk0KjN
138 137 anim1ci RRingUBWBK0iNjNk0KtNtNjN
139 1 2 3 decpmate RRingWBKk0tNjNtWdecompPMatKkj=coe1tWjKk
140 53 138 139 syl2an2r RRingUBWBK0iNjNk0KtNtWdecompPMatKkj=coe1tWjKk
141 136 140 oveq12d RRingUBWBK0iNjNk0KtNiUdecompPMatktRtWdecompPMatKkj=coe1iUtkRcoe1tWjKk
142 141 eqcomd RRingUBWBK0iNjNk0KtNcoe1iUtkRcoe1tWjKk=iUdecompPMatktRtWdecompPMatKkj
143 142 mpteq2dva RRingUBWBK0iNjNk0KtNcoe1iUtkRcoe1tWjKk=tNiUdecompPMatktRtWdecompPMatKkj
144 143 oveq2d RRingUBWBK0iNjNk0KRtNcoe1iUtkRcoe1tWjKk=RtNiUdecompPMatktRtWdecompPMatKkj
145 144 mpteq2dva RRingUBWBK0iNjNk0KRtNcoe1iUtkRcoe1tWjKk=k0KRtNiUdecompPMatktRtWdecompPMatKkj
146 145 oveq2d RRingUBWBK0iNjNRk=0KRtNcoe1iUtkRcoe1tWjKk=Rk=0KRtNiUdecompPMatktRtWdecompPMatKkj
147 106 132 146 3eqtrd RRingUBWBK0iNjNiUCWdecompPMatKj=Rk=0KRtNiUdecompPMatktRtWdecompPMatKkj
148 17 102 147 3eqtr4rd RRingUBWBK0iNjNiUCWdecompPMatKj=iAk=0KUdecompPMatkAWdecompPMatKkj
149 148 ralrimivva RRingUBWBK0iNjNiUCWdecompPMatKj=iAk=0KUdecompPMatkAWdecompPMatKkj
150 1 2 pmatring NFinRRingCRing
151 22 150 syl RRingUBWBCRing
152 simprl RRingUBWBUB
153 simprr RRingUBWBWB
154 eqid C=C
155 3 154 ringcl CRingUBWBUCWB
156 151 152 153 155 syl3anc RRingUBWBUCWB
157 156 3adant3 RRingUBWBK0UCWB
158 1 2 3 4 44 decpmatcl RRingUCWBK0UCWdecompPMatKBaseA
159 157 158 syld3an2 RRingUBWBK0UCWdecompPMatKBaseA
160 4 matring NFinRRingARing
161 23 160 syl RRingUBWBK0ARing
162 ringcmn ARingACMnd
163 161 162 syl RRingUBWBK0ACMnd
164 fzfid RRingUBWBK00KFin
165 161 adantr RRingUBWBK0k0KARing
166 33 adantr RRingUBWBK0k0KRRing
167 simpl2l RRingUBWBK0k0KUB
168 41 adantl RRingUBWBK0k0Kk0
169 166 167 168 3jca RRingUBWBK0k0KRRingUBk0
170 169 45 syl RRingUBWBK0k0KUdecompPMatkBaseA
171 simpl2r RRingUBWBK0k0KWB
172 51 adantl RRingUBWBK0k0KKk0
173 166 171 172 3jca RRingUBWBK0k0KRRingWBKk0
174 173 54 syl RRingUBWBK0k0KWdecompPMatKkBaseA
175 eqid A=A
176 44 175 ringcl ARingUdecompPMatkBaseAWdecompPMatKkBaseAUdecompPMatkAWdecompPMatKkBaseA
177 165 170 174 176 syl3anc RRingUBWBK0k0KUdecompPMatkAWdecompPMatKkBaseA
178 177 ralrimiva RRingUBWBK0k0KUdecompPMatkAWdecompPMatKkBaseA
179 44 163 164 178 gsummptcl RRingUBWBK0Ak=0KUdecompPMatkAWdecompPMatKkBaseA
180 4 44 eqmat UCWdecompPMatKBaseAAk=0KUdecompPMatkAWdecompPMatKkBaseAUCWdecompPMatK=Ak=0KUdecompPMatkAWdecompPMatKkiNjNiUCWdecompPMatKj=iAk=0KUdecompPMatkAWdecompPMatKkj
181 159 179 180 syl2anc RRingUBWBK0UCWdecompPMatK=Ak=0KUdecompPMatkAWdecompPMatKkiNjNiUCWdecompPMatKj=iAk=0KUdecompPMatkAWdecompPMatKkj
182 149 181 mpbird RRingUBWBK0UCWdecompPMatK=Ak=0KUdecompPMatkAWdecompPMatKk