Metamath Proof Explorer


Theorem dgrco

Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses dgrco.1 M=degF
dgrco.2 N=degG
dgrco.3 φFPolyS
dgrco.4 φGPolyS
Assertion dgrco φdegFG= M N

Proof

Step Hyp Ref Expression
1 dgrco.1 M=degF
2 dgrco.2 N=degG
3 dgrco.3 φFPolyS
4 dgrco.4 φGPolyS
5 plyssc PolySPoly
6 5 3 sselid φFPoly
7 dgrcl FPolySdegF0
8 3 7 syl φdegF0
9 1 8 eqeltrid φM0
10 breq2 x=0degfxdegf0
11 10 imbi1d x=0degfxdegfG=degf Ndegf0degfG=degf N
12 11 ralbidv x=0fPolydegfxdegfG=degf NfPolydegf0degfG=degf N
13 12 imbi2d x=0φfPolydegfxdegfG=degf NφfPolydegf0degfG=degf N
14 breq2 x=ddegfxdegfd
15 14 imbi1d x=ddegfxdegfG=degf NdegfddegfG=degf N
16 15 ralbidv x=dfPolydegfxdegfG=degf NfPolydegfddegfG=degf N
17 16 imbi2d x=dφfPolydegfxdegfG=degf NφfPolydegfddegfG=degf N
18 breq2 x=d+1degfxdegfd+1
19 18 imbi1d x=d+1degfxdegfG=degf Ndegfd+1degfG=degf N
20 19 ralbidv x=d+1fPolydegfxdegfG=degf NfPolydegfd+1degfG=degf N
21 20 imbi2d x=d+1φfPolydegfxdegfG=degf NφfPolydegfd+1degfG=degf N
22 breq2 x=MdegfxdegfM
23 22 imbi1d x=MdegfxdegfG=degf NdegfMdegfG=degf N
24 23 ralbidv x=MfPolydegfxdegfG=degf NfPolydegfMdegfG=degf N
25 24 imbi2d x=MφfPolydegfxdegfG=degf NφfPolydegfMdegfG=degf N
26 dgrcl GPolySdegG0
27 4 26 syl φdegG0
28 2 27 eqeltrid φN0
29 28 nn0cnd φN
30 29 adantr φfPolydegf0N
31 30 mul02d φfPolydegf00 N=0
32 simprr φfPolydegf0degf0
33 dgrcl fPolydegf0
34 33 ad2antrl φfPolydegf0degf0
35 34 nn0ge0d φfPolydegf00degf
36 34 nn0red φfPolydegf0degf
37 0re 0
38 letri3 degf0degf=0degf00degf
39 36 37 38 sylancl φfPolydegf0degf=0degf00degf
40 32 35 39 mpbir2and φfPolydegf0degf=0
41 40 oveq1d φfPolydegf0degf N=0 N
42 31 41 40 3eqtr4d φfPolydegf0degf N=degf
43 fconstmpt ×f0=yf0
44 0dgrb fPolydegf=0f=×f0
45 44 ad2antrl φfPolydegf0degf=0f=×f0
46 40 45 mpbid φfPolydegf0f=×f0
47 4 adantr φfPolydegf0GPolyS
48 plyf GPolySG:
49 47 48 syl φfPolydegf0G:
50 49 ffvelcdmda φfPolydegf0yGy
51 49 feqmptd φfPolydegf0G=yGy
52 fconstmpt ×f0=xf0
53 46 52 eqtrdi φfPolydegf0f=xf0
54 eqidd x=Gyf0=f0
55 50 51 53 54 fmptco φfPolydegf0fG=yf0
56 43 46 55 3eqtr4a φfPolydegf0f=fG
57 56 fveq2d φfPolydegf0degf=degfG
58 42 57 eqtr2d φfPolydegf0degfG=degf N
59 58 expr φfPolydegf0degfG=degf N
60 59 ralrimiva φfPolydegf0degfG=degf N
61 fveq2 f=gdegf=degg
62 61 breq1d f=gdegfddeggd
63 coeq1 f=gfG=gG
64 63 fveq2d f=gdegfG=deggG
65 61 oveq1d f=gdegf N=degg N
66 64 65 eqeq12d f=gdegfG=degf NdeggG=degg N
67 62 66 imbi12d f=gdegfddegfG=degf NdeggddeggG=degg N
68 67 cbvralvw fPolydegfddegfG=degf NgPolydeggddeggG=degg N
69 33 ad2antrl φd0fPolygPolydeggddeggG=degg Ndegf0
70 69 nn0red φd0fPolygPolydeggddeggG=degg Ndegf
71 nn0p1nn d0d+1
72 71 ad2antlr φd0fPolygPolydeggddeggG=degg Nd+1
73 72 nnred φd0fPolygPolydeggddeggG=degg Nd+1
74 70 73 leloed φd0fPolygPolydeggddeggG=degg Ndegfd+1degf<d+1degf=d+1
75 simplr φd0fPolygPolydeggddeggG=degg Nd0
76 nn0leltp1 degf0d0degfddegf<d+1
77 69 75 76 syl2anc φd0fPolygPolydeggddeggG=degg Ndegfddegf<d+1
78 fveq2 g=fdegg=degf
79 78 breq1d g=fdeggddegfd
80 coeq1 g=fgG=fG
81 80 fveq2d g=fdeggG=degfG
82 78 oveq1d g=fdegg N=degf N
83 81 82 eqeq12d g=fdeggG=degg NdegfG=degf N
84 79 83 imbi12d g=fdeggddeggG=degg NdegfddegfG=degf N
85 84 rspcva fPolygPolydeggddeggG=degg NdegfddegfG=degf N
86 85 adantl φd0fPolygPolydeggddeggG=degg NdegfddegfG=degf N
87 77 86 sylbird φd0fPolygPolydeggddeggG=degg Ndegf<d+1degfG=degf N
88 eqid degf=degf
89 simprll φd0fPolygPolydeggddeggG=degg Ndegf=d+1fPoly
90 5 4 sselid φGPoly
91 90 ad2antrr φd0fPolygPolydeggddeggG=degg Ndegf=d+1GPoly
92 eqid coefff=coefff
93 simplr φd0fPolygPolydeggddeggG=degg Ndegf=d+1d0
94 simprr φd0fPolygPolydeggddeggG=degg Ndegf=d+1degf=d+1
95 simprlr φd0fPolygPolydeggddeggG=degg Ndegf=d+1gPolydeggddeggG=degg N
96 fveq2 g=hdegg=degh
97 96 breq1d g=hdeggddeghd
98 coeq1 g=hgG=hG
99 98 fveq2d g=hdeggG=deghG
100 96 oveq1d g=hdegg N=degh N
101 99 100 eqeq12d g=hdeggG=degg NdeghG=degh N
102 97 101 imbi12d g=hdeggddeggG=degg NdeghddeghG=degh N
103 102 cbvralvw gPolydeggddeggG=degg NhPolydeghddeghG=degh N
104 95 103 sylib φd0fPolygPolydeggddeggG=degg Ndegf=d+1hPolydeghddeghG=degh N
105 88 2 89 91 92 93 94 104 dgrcolem2 φd0fPolygPolydeggddeggG=degg Ndegf=d+1degfG=degf N
106 105 expr φd0fPolygPolydeggddeggG=degg Ndegf=d+1degfG=degf N
107 87 106 jaod φd0fPolygPolydeggddeggG=degg Ndegf<d+1degf=d+1degfG=degf N
108 74 107 sylbid φd0fPolygPolydeggddeggG=degg Ndegfd+1degfG=degf N
109 108 expr φd0fPolygPolydeggddeggG=degg Ndegfd+1degfG=degf N
110 109 ralrimdva φd0gPolydeggddeggG=degg NfPolydegfd+1degfG=degf N
111 68 110 biimtrid φd0fPolydegfddegfG=degf NfPolydegfd+1degfG=degf N
112 111 expcom d0φfPolydegfddegfG=degf NfPolydegfd+1degfG=degf N
113 112 a2d d0φfPolydegfddegfG=degf NφfPolydegfd+1degfG=degf N
114 13 17 21 25 60 113 nn0ind M0φfPolydegfMdegfG=degf N
115 9 114 mpcom φfPolydegfMdegfG=degf N
116 9 nn0red φM
117 116 leidd φMM
118 fveq2 f=Fdegf=degF
119 118 1 eqtr4di f=Fdegf=M
120 119 breq1d f=FdegfMMM
121 coeq1 f=FfG=FG
122 121 fveq2d f=FdegfG=degFG
123 119 oveq1d f=Fdegf N= M N
124 122 123 eqeq12d f=FdegfG=degf NdegFG= M N
125 120 124 imbi12d f=FdegfMdegfG=degf NMMdegFG= M N
126 125 rspcv FPolyfPolydegfMdegfG=degf NMMdegFG= M N
127 6 115 117 126 syl3c φdegFG= M N