Metamath Proof Explorer


Theorem dihglbcpreN

Description: Isomorphism H of a lattice glb when the glb is not under the fiducial hyperplane W . (Contributed by NM, 20-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglbc.b B=BaseK
dihglbc.g G=glbK
dihglbc.h H=LHypK
dihglbc.i I=DIsoHKW
dihglbc.l ˙=K
dihglbcpre.j ˙=joinK
dihglbcpre.m ˙=meetK
dihglbcpre.a A=AtomsK
dihglbcpre.p P=ocKW
dihglbcpre.t T=LTrnKW
dihglbcpre.r R=trLKW
dihglbcpre.e E=TEndoKW
dihglbcpre.f F=ιgT|gP=q
Assertion dihglbcpreN KHLWHSBS¬GS˙WIGS=xSIx

Proof

Step Hyp Ref Expression
1 dihglbc.b B=BaseK
2 dihglbc.g G=glbK
3 dihglbc.h H=LHypK
4 dihglbc.i I=DIsoHKW
5 dihglbc.l ˙=K
6 dihglbcpre.j ˙=joinK
7 dihglbcpre.m ˙=meetK
8 dihglbcpre.a A=AtomsK
9 dihglbcpre.p P=ocKW
10 dihglbcpre.t T=LTrnKW
11 dihglbcpre.r R=trLKW
12 dihglbcpre.e E=TEndoKW
13 dihglbcpre.f F=ιgT|gP=q
14 3 4 dihvalrel KHLWHRelIGS
15 14 3ad2ant1 KHLWHSBS¬GS˙WRelIGS
16 simp2r KHLWHSBS¬GS˙WS
17 n0 SxxS
18 16 17 sylib KHLWHSBS¬GS˙WxxS
19 simpr KHLWHSBS¬GS˙WxSxS
20 simpl1 KHLWHSBS¬GS˙WxSKHLWH
21 3 4 dihvalrel KHLWHRelIx
22 20 21 syl KHLWHSBS¬GS˙WxSRelIx
23 19 22 jca KHLWHSBS¬GS˙WxSxSRelIx
24 23 ex KHLWHSBS¬GS˙WxSxSRelIx
25 24 eximdv KHLWHSBS¬GS˙WxxSxxSRelIx
26 18 25 mpd KHLWHSBS¬GS˙WxxSRelIx
27 df-rex xSRelIxxxSRelIx
28 26 27 sylibr KHLWHSBS¬GS˙WxSRelIx
29 reliin xSRelIxRelxSIx
30 28 29 syl KHLWHSBS¬GS˙WRelxSIx
31 id KHLWHSBS¬GS˙WKHLWHSBS¬GS˙W
32 simp1 KHLWHSBS¬GS˙WKHLWH
33 simp1l KHLWHSBS¬GS˙WKHL
34 hlclat KHLKCLat
35 33 34 syl KHLWHSBS¬GS˙WKCLat
36 simp2l KHLWHSBS¬GS˙WSB
37 1 2 clatglbcl KCLatSBGSB
38 35 36 37 syl2anc KHLWHSBS¬GS˙WGSB
39 simp3 KHLWHSBS¬GS˙W¬GS˙W
40 1 5 6 7 8 3 lhpmcvr2 KHLWHGSB¬GS˙WqA¬q˙Wq˙GS˙W=GS
41 32 38 39 40 syl12anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GS
42 simpl1 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSKHLWH
43 38 adantr KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSGSB
44 simpl3 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GS¬GS˙W
45 simpr KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSqA¬q˙Wq˙GS˙W=GS
46 vex fV
47 vex sV
48 1 5 6 7 8 3 9 10 11 12 4 13 46 47 dihopelvalc KHLWHGSB¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfTsERfsF-1˙GS
49 42 43 44 45 48 syl121anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfTsERfsF-1˙GS
50 simpl2r KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSS
51 r19.28zv SxSfTsERfsF-1˙xfTsExSRfsF-1˙x
52 50 51 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSfTsERfsF-1˙xfTsExSRfsF-1˙x
53 simp11 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSKHLWH
54 simp12l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSSB
55 simp3 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSxS
56 54 55 sseldd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSxB
57 simp13 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxS¬GS˙W
58 simp11l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSKHL
59 58 34 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSKCLat
60 1 5 2 clatglble KCLatSBxSGS˙x
61 59 54 55 60 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSGS˙x
62 58 hllatd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSKLat
63 38 3ad2ant1 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSGSB
64 simp11r KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSWH
65 1 3 lhpbase WHWB
66 64 65 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSWB
67 1 5 lattr KLatGSBxBWBGS˙xx˙WGS˙W
68 62 63 56 66 67 syl13anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSGS˙xx˙WGS˙W
69 61 68 mpand KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSx˙WGS˙W
70 57 69 mtod KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxS¬x˙W
71 simp2l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSqA¬q˙W
72 simp2ll KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSqA
73 1 8 atbase qAqB
74 72 73 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSqB
75 1 7 latmcl KLatGSBWBGS˙WB
76 62 63 66 75 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSGS˙WB
77 1 5 6 latlej1 KLatqBGS˙WBq˙q˙GS˙W
78 62 74 76 77 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙q˙GS˙W
79 simp2r KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙GS˙W=GS
80 78 79 breqtrd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙GS
81 1 5 62 74 63 56 80 61 lattrd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙x
82 1 5 6 7 8 atmod3i1 KHLqAxBWBq˙xq˙x˙W=x˙q˙W
83 58 72 56 66 81 82 syl131anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙x˙W=x˙q˙W
84 eqid 1.K=1.K
85 5 6 84 8 3 lhpjat2 KHLWHqA¬q˙Wq˙W=1.K
86 53 71 85 syl2anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙W=1.K
87 86 oveq2d KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSx˙q˙W=x˙1.K
88 hlol KHLKOL
89 58 88 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSKOL
90 1 7 84 olm11 KOLxBx˙1.K=x
91 89 56 90 syl2anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSx˙1.K=x
92 83 87 91 3eqtrd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSq˙x˙W=x
93 1 5 6 7 8 3 9 10 11 12 4 13 46 47 dihopelvalc KHLWHxB¬x˙WqA¬q˙Wq˙x˙W=xfsIxfTsERfsF-1˙x
94 53 56 70 71 92 93 syl122anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSfsIxfTsERfsF-1˙x
95 94 3expa KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSfsIxfTsERfsF-1˙x
96 95 ralbidva KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSxSfsIxxSfTsERfsF-1˙x
97 simp11l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEKHL
98 97 34 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEKCLat
99 simp11 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEKHLWH
100 simp3l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEfT
101 simp3r KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEsE
102 5 8 3 9 lhpocnel2 KHLWHPA¬P˙W
103 99 102 syl KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEPA¬P˙W
104 simp2l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEqA¬q˙W
105 5 8 3 10 13 ltrniotacl KHLWHPA¬P˙WqA¬q˙WFT
106 99 103 104 105 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEFT
107 3 10 12 tendocl KHLWHsEFTsFT
108 99 101 106 107 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEsFT
109 3 10 ltrncnv KHLWHsFTsF-1T
110 99 108 109 syl2anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEsF-1T
111 3 10 ltrnco KHLWHfTsF-1TfsF-1T
112 99 100 110 111 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsEfsF-1T
113 1 3 10 11 trlcl KHLWHfsF-1TRfsF-1B
114 99 112 113 syl2anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1B
115 simp12l KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsESB
116 1 5 2 clatleglb KCLatRfsF-1BSBRfsF-1˙GSxSRfsF-1˙x
117 98 114 115 116 syl3anc KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1˙GSxSRfsF-1˙x
118 117 3expa KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1˙GSxSRfsF-1˙x
119 118 pm5.32da KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1˙GSfTsExSRfsF-1˙x
120 52 96 119 3bitr4rd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1˙GSxSfsIx
121 opex fsV
122 eliin fsVfsxSIxxSfsIx
123 121 122 ax-mp fsxSIxxSfsIx
124 120 123 bitr4di KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfTsERfsF-1˙GSfsxSIx
125 49 124 bitrd KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfsxSIx
126 125 exp44 KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfsxSIx
127 126 imp4a KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfsxSIx
128 127 rexlimdv KHLWHSBS¬GS˙WqA¬q˙Wq˙GS˙W=GSfsIGSfsxSIx
129 41 128 mpd KHLWHSBS¬GS˙WfsIGSfsxSIx
130 129 eqrelrdv2 RelIGSRelxSIxKHLWHSBS¬GS˙WIGS=xSIx
131 15 30 31 130 syl21anc KHLWHSBS¬GS˙WIGS=xSIx