Metamath Proof Explorer


Theorem dihglblem5apreN

Description: A conjunction property of isomorphism H. TODO: reduce antecedent size; general review for shorter proof. (Contributed by NM, 21-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem5a.b B=BaseK
dihglblem5a.m ˙=meetK
dihglblem5a.h H=LHypK
dihglblem5a.i I=DIsoHKW
dihglblem5a.l ˙=K
dihglblem5a.j ˙=joinK
dihglblem5a.a A=AtomsK
dihglblem5a.p P=ocKW
dihglblem5a.t T=LTrnKW
dihglblem5a.r R=trLKW
dihglblem5a.e E=TEndoKW
dihglblem5a.g G=ιhT|hP=q
dihglblem5a.o 0˙=hTIB
Assertion dihglblem5apreN KHLWHXB¬X˙WIX˙W=IXIW

Proof

Step Hyp Ref Expression
1 dihglblem5a.b B=BaseK
2 dihglblem5a.m ˙=meetK
3 dihglblem5a.h H=LHypK
4 dihglblem5a.i I=DIsoHKW
5 dihglblem5a.l ˙=K
6 dihglblem5a.j ˙=joinK
7 dihglblem5a.a A=AtomsK
8 dihglblem5a.p P=ocKW
9 dihglblem5a.t T=LTrnKW
10 dihglblem5a.r R=trLKW
11 dihglblem5a.e E=TEndoKW
12 dihglblem5a.g G=ιhT|hP=q
13 dihglblem5a.o 0˙=hTIB
14 hllat KHLKLat
15 14 ad2antrr KHLWHXB¬X˙WKLat
16 simprl KHLWHXB¬X˙WXB
17 1 3 lhpbase WHWB
18 17 ad2antlr KHLWHXB¬X˙WWB
19 1 5 2 latmle1 KLatXBWBX˙W˙X
20 15 16 18 19 syl3anc KHLWHXB¬X˙WX˙W˙X
21 simpl KHLWHXB¬X˙WKHLWH
22 1 2 latmcl KLatXBWBX˙WB
23 15 16 18 22 syl3anc KHLWHXB¬X˙WX˙WB
24 1 5 3 4 dihord KHLWHX˙WBXBIX˙WIXX˙W˙X
25 21 23 16 24 syl3anc KHLWHXB¬X˙WIX˙WIXX˙W˙X
26 20 25 mpbird KHLWHXB¬X˙WIX˙WIX
27 1 5 2 latmle2 KLatXBWBX˙W˙W
28 15 16 18 27 syl3anc KHLWHXB¬X˙WX˙W˙W
29 1 5 3 4 dihord KHLWHX˙WBWBIX˙WIWX˙W˙W
30 21 23 18 29 syl3anc KHLWHXB¬X˙WIX˙WIWX˙W˙W
31 28 30 mpbird KHLWHXB¬X˙WIX˙WIW
32 26 31 ssind KHLWHXB¬X˙WIX˙WIXIW
33 3 4 dihvalrel KHLWHRelIX
34 relin1 RelIXRelIXIW
35 33 34 syl KHLWHRelIXIW
36 35 adantr KHLWHXB¬X˙WRelIXIW
37 elin fsIXIWfsIXfsIW
38 1 5 6 2 7 3 lhpmcvr2 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=X
39 vex fV
40 vex sV
41 1 5 6 2 7 3 8 9 10 11 4 12 39 40 dihopelvalc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfTsERfsG-1˙X
42 id KHLWHKHLWH
43 17 adantl KHLWHWB
44 1 5 latref KLatWBW˙W
45 14 17 44 syl2an KHLWHW˙W
46 1 5 3 9 10 13 4 dihopelvalbN KHLWHWBW˙WfsIWfTRf˙Ws=0˙
47 42 43 45 46 syl12anc KHLWHfsIWfTRf˙Ws=0˙
48 47 3ad2ant1 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIWfTRf˙Ws=0˙
49 41 48 anbi12d KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfTsERfsG-1˙XfTRf˙Ws=0˙
50 simprll fTsERfsG-1˙XfTRf˙Ws=0˙fT
51 50 adantl KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fT
52 simprrr KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙s=0˙
53 52 fveq1d KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙sG=0˙G
54 simpl1 KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙KHLWH
55 5 7 3 8 lhpocnel2 KHLWHPA¬P˙W
56 54 55 syl KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙PA¬P˙W
57 simpl3l KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙qA¬q˙W
58 5 7 3 9 12 ltrniotacl KHLWHPA¬P˙WqA¬q˙WGT
59 54 56 57 58 syl3anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙GT
60 13 1 tendo02 GT0˙G=IB
61 59 60 syl KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙0˙G=IB
62 53 61 eqtrd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙sG=IB
63 62 cnveqd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙sG-1=IB-1
64 cnvresid IB-1=IB
65 63 64 eqtrdi KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙sG-1=IB
66 65 coeq2d KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fsG-1=fIB
67 1 3 9 ltrn1o KHLWHfTf:B1-1 ontoB
68 54 51 67 syl2anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙f:B1-1 ontoB
69 f1of f:B1-1 ontoBf:BB
70 fcoi1 f:BBfIB=f
71 68 69 70 3syl KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fIB=f
72 66 71 eqtrd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fsG-1=f
73 72 fveq2d KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙RfsG-1=Rf
74 simprlr KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙RfsG-1˙X
75 73 74 eqbrtrrd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙Rf˙X
76 5 3 9 10 trlle KHLWHfTRf˙W
77 54 51 76 syl2anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙Rf˙W
78 simpl1l KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙KHL
79 78 hllatd KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙KLat
80 1 3 9 10 trlcl KHLWHfTRfB
81 54 51 80 syl2anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙RfB
82 simpl2l KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙XB
83 simpl1r KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙WH
84 83 17 syl KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙WB
85 1 5 2 latlem12 KLatRfBXBWBRf˙XRf˙WRf˙X˙W
86 79 81 82 84 85 syl13anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙Rf˙XRf˙WRf˙X˙W
87 75 77 86 mpbi2and KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙Rf˙X˙W
88 51 87 jca KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fTRf˙X˙W
89 79 82 84 22 syl3anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙X˙WB
90 79 82 84 27 syl3anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙X˙W˙W
91 1 5 3 9 10 13 4 dihopelvalbN KHLWHX˙WBX˙W˙WfsIX˙WfTRf˙X˙Ws=0˙
92 54 89 90 91 syl12anc KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fsIX˙WfTRf˙X˙Ws=0˙
93 88 52 92 mpbir2and KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fsIX˙W
94 93 ex KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfTsERfsG-1˙XfTRf˙Ws=0˙fsIX˙W
95 49 94 sylbid KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfsIX˙W
96 95 3expia KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfsIX˙W
97 96 exp4c KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfsIX˙W
98 97 imp4a KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfsIX˙W
99 98 rexlimdv KHLWHXB¬X˙WqA¬q˙Wq˙X˙W=XfsIXfsIWfsIX˙W
100 38 99 mpd KHLWHXB¬X˙WfsIXfsIWfsIX˙W
101 37 100 biimtrid KHLWHXB¬X˙WfsIXIWfsIX˙W
102 36 101 relssdv KHLWHXB¬X˙WIXIWIX˙W
103 32 102 eqssd KHLWHXB¬X˙WIX˙W=IXIW