Metamath Proof Explorer


Theorem eldioph2lem1

Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2lem1 N 0 A Fin 1 N A d N e V e : 1 d 1-1 onto A e 1 N = I 1 N

Proof

Step Hyp Ref Expression
1 nn0re N 0 N
2 1 3ad2ant1 N 0 A Fin 1 N A N
3 2 recnd N 0 A Fin 1 N A N
4 ax-1cn 1
5 addcom N 1 N + 1 = 1 + N
6 3 4 5 sylancl N 0 A Fin 1 N A N + 1 = 1 + N
7 diffi A Fin A 1 N Fin
8 7 3ad2ant2 N 0 A Fin 1 N A A 1 N Fin
9 fzfid N 0 A Fin 1 N A 1 N Fin
10 incom A 1 N 1 N = 1 N A 1 N
11 disjdif 1 N A 1 N =
12 10 11 eqtri A 1 N 1 N =
13 12 a1i N 0 A Fin 1 N A A 1 N 1 N =
14 hashun A 1 N Fin 1 N Fin A 1 N 1 N = A 1 N 1 N = A 1 N + 1 N
15 8 9 13 14 syl3anc N 0 A Fin 1 N A A 1 N 1 N = A 1 N + 1 N
16 uncom A 1 N 1 N = 1 N A 1 N
17 simp3 N 0 A Fin 1 N A 1 N A
18 undif 1 N A 1 N A 1 N = A
19 17 18 sylib N 0 A Fin 1 N A 1 N A 1 N = A
20 16 19 syl5eq N 0 A Fin 1 N A A 1 N 1 N = A
21 20 fveq2d N 0 A Fin 1 N A A 1 N 1 N = A
22 hashfz1 N 0 1 N = N
23 22 3ad2ant1 N 0 A Fin 1 N A 1 N = N
24 23 oveq2d N 0 A Fin 1 N A A 1 N + 1 N = A 1 N + N
25 15 21 24 3eqtr3d N 0 A Fin 1 N A A = A 1 N + N
26 6 25 oveq12d N 0 A Fin 1 N A N + 1 A = 1 + N A 1 N + N
27 26 fveq2d N 0 A Fin 1 N A N + 1 A = 1 + N A 1 N + N
28 1zzd N 0 A Fin 1 N A 1
29 hashcl A 1 N Fin A 1 N 0
30 8 29 syl N 0 A Fin 1 N A A 1 N 0
31 30 nn0zd N 0 A Fin 1 N A A 1 N
32 nn0z N 0 N
33 32 3ad2ant1 N 0 A Fin 1 N A N
34 fzen 1 A 1 N N 1 A 1 N 1 + N A 1 N + N
35 28 31 33 34 syl3anc N 0 A Fin 1 N A 1 A 1 N 1 + N A 1 N + N
36 35 ensymd N 0 A Fin 1 N A 1 + N A 1 N + N 1 A 1 N
37 fzfi 1 + N A 1 N + N Fin
38 fzfi 1 A 1 N Fin
39 hashen 1 + N A 1 N + N Fin 1 A 1 N Fin 1 + N A 1 N + N = 1 A 1 N 1 + N A 1 N + N 1 A 1 N
40 37 38 39 mp2an 1 + N A 1 N + N = 1 A 1 N 1 + N A 1 N + N 1 A 1 N
41 36 40 sylibr N 0 A Fin 1 N A 1 + N A 1 N + N = 1 A 1 N
42 hashfz1 A 1 N 0 1 A 1 N = A 1 N
43 30 42 syl N 0 A Fin 1 N A 1 A 1 N = A 1 N
44 27 41 43 3eqtrd N 0 A Fin 1 N A N + 1 A = A 1 N
45 fzfi N + 1 A Fin
46 hashen N + 1 A Fin A 1 N Fin N + 1 A = A 1 N N + 1 A A 1 N
47 45 8 46 sylancr N 0 A Fin 1 N A N + 1 A = A 1 N N + 1 A A 1 N
48 44 47 mpbid N 0 A Fin 1 N A N + 1 A A 1 N
49 bren N + 1 A A 1 N a a : N + 1 A 1-1 onto A 1 N
50 48 49 sylib N 0 A Fin 1 N A a a : N + 1 A 1-1 onto A 1 N
51 simpl1 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N 0
52 51 nn0zd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N
53 simpl2 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A Fin
54 hashcl A Fin A 0
55 53 54 syl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 0
56 55 nn0zd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A
57 nn0addge2 N A 1 N 0 N A 1 N + N
58 2 30 57 syl2anc N 0 A Fin 1 N A N A 1 N + N
59 58 25 breqtrrd N 0 A Fin 1 N A N A
60 59 adantr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N A
61 eluz2 A N N A N A
62 52 56 60 61 syl3anbrc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A N
63 vex a V
64 ovex 1 N V
65 resiexg 1 N V I 1 N V
66 64 65 ax-mp I 1 N V
67 63 66 unex a I 1 N V
68 67 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N V
69 simpr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a : N + 1 A 1-1 onto A 1 N
70 f1oi I 1 N : 1 N 1-1 onto 1 N
71 70 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N I 1 N : 1 N 1-1 onto 1 N
72 incom N + 1 A 1 N = 1 N N + 1 A
73 51 nn0red N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N
74 73 ltp1d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N < N + 1
75 fzdisj N < N + 1 1 N N + 1 A =
76 74 75 syl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N N + 1 A =
77 72 76 syl5eq N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N + 1 A 1 N =
78 12 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 1 N 1 N =
79 f1oun a : N + 1 A 1-1 onto A 1 N I 1 N : 1 N 1-1 onto 1 N N + 1 A 1 N = A 1 N 1 N = a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N
80 69 71 77 78 79 syl22anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N
81 uncom N + 1 A 1 N = 1 N N + 1 A
82 fzsplit1nn0 N 0 A 0 N A 1 A = 1 N N + 1 A
83 51 55 60 82 syl3anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 A = 1 N N + 1 A
84 81 83 eqtr4id N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N N + 1 A 1 N = 1 A
85 simpl3 N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N A
86 85 18 sylib N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N A 1 N = A
87 16 86 syl5eq N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N A 1 N 1 N = A
88 f1oeq23 N + 1 A 1 N = 1 A A 1 N 1 N = A a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N a I 1 N : 1 A 1-1 onto A
89 84 87 88 syl2anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : N + 1 A 1 N 1-1 onto A 1 N 1 N a I 1 N : 1 A 1-1 onto A
90 80 89 mpbid N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N : 1 A 1-1 onto A
91 resundir a I 1 N 1 N = a 1 N I 1 N 1 N
92 dmres dom a 1 N = 1 N dom a
93 f1odm a : N + 1 A 1-1 onto A 1 N dom a = N + 1 A
94 93 adantl N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N dom a = N + 1 A
95 94 ineq2d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N dom a = 1 N N + 1 A
96 95 76 eqtrd N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N 1 N dom a =
97 92 96 syl5eq N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N dom a 1 N =
98 relres Rel a 1 N
99 reldm0 Rel a 1 N a 1 N = dom a 1 N =
100 98 99 ax-mp a 1 N = dom a 1 N =
101 97 100 sylibr N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N =
102 residm I 1 N 1 N = I 1 N
103 102 a1i N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N I 1 N 1 N = I 1 N
104 101 103 uneq12d N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N I 1 N 1 N = I 1 N
105 uncom I 1 N = I 1 N
106 un0 I 1 N = I 1 N
107 105 106 eqtri I 1 N = I 1 N
108 104 107 eqtrdi N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a 1 N I 1 N 1 N = I 1 N
109 91 108 syl5eq N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N a I 1 N 1 N = I 1 N
110 oveq2 d = A 1 d = 1 A
111 110 f1oeq2d d = A e : 1 d 1-1 onto A e : 1 A 1-1 onto A
112 111 anbi1d d = A e : 1 d 1-1 onto A e 1 N = I 1 N e : 1 A 1-1 onto A e 1 N = I 1 N
113 f1oeq1 e = a I 1 N e : 1 A 1-1 onto A a I 1 N : 1 A 1-1 onto A
114 reseq1 e = a I 1 N e 1 N = a I 1 N 1 N
115 114 eqeq1d e = a I 1 N e 1 N = I 1 N a I 1 N 1 N = I 1 N
116 113 115 anbi12d e = a I 1 N e : 1 A 1-1 onto A e 1 N = I 1 N a I 1 N : 1 A 1-1 onto A a I 1 N 1 N = I 1 N
117 112 116 rspc2ev A N a I 1 N V a I 1 N : 1 A 1-1 onto A a I 1 N 1 N = I 1 N d N e V e : 1 d 1-1 onto A e 1 N = I 1 N
118 62 68 90 109 117 syl112anc N 0 A Fin 1 N A a : N + 1 A 1-1 onto A 1 N d N e V e : 1 d 1-1 onto A e 1 N = I 1 N
119 50 118 exlimddv N 0 A Fin 1 N A d N e V e : 1 d 1-1 onto A e 1 N = I 1 N