Metamath Proof Explorer


Theorem eldioph2lem1

Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2lem1 N0AFin1NAdNeVe:1d1-1 ontoAe1N=I1N

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 1 3ad2ant1 N0AFin1NAN
3 2 recnd N0AFin1NAN
4 ax-1cn 1
5 addcom N1N+1=1+N
6 3 4 5 sylancl N0AFin1NAN+1=1+N
7 diffi AFinA1NFin
8 7 3ad2ant2 N0AFin1NAA1NFin
9 fzfid N0AFin1NA1NFin
10 disjdifr A1N1N=
11 10 a1i N0AFin1NAA1N1N=
12 hashun A1NFin1NFinA1N1N=A1N1N=A1N+1N
13 8 9 11 12 syl3anc N0AFin1NAA1N1N=A1N+1N
14 uncom A1N1N=1NA1N
15 simp3 N0AFin1NA1NA
16 undif 1NA1NA1N=A
17 15 16 sylib N0AFin1NA1NA1N=A
18 14 17 eqtrid N0AFin1NAA1N1N=A
19 18 fveq2d N0AFin1NAA1N1N=A
20 hashfz1 N01N=N
21 20 3ad2ant1 N0AFin1NA1N=N
22 21 oveq2d N0AFin1NAA1N+1N=A1N+N
23 13 19 22 3eqtr3d N0AFin1NAA=A1N+N
24 6 23 oveq12d N0AFin1NAN+1A=1+NA1N+N
25 24 fveq2d N0AFin1NAN+1A=1+NA1N+N
26 1zzd N0AFin1NA1
27 hashcl A1NFinA1N0
28 8 27 syl N0AFin1NAA1N0
29 28 nn0zd N0AFin1NAA1N
30 nn0z N0N
31 30 3ad2ant1 N0AFin1NAN
32 fzen 1A1NN1A1N1+NA1N+N
33 26 29 31 32 syl3anc N0AFin1NA1A1N1+NA1N+N
34 33 ensymd N0AFin1NA1+NA1N+N1A1N
35 fzfi 1+NA1N+NFin
36 fzfi 1A1NFin
37 hashen 1+NA1N+NFin1A1NFin1+NA1N+N=1A1N1+NA1N+N1A1N
38 35 36 37 mp2an 1+NA1N+N=1A1N1+NA1N+N1A1N
39 34 38 sylibr N0AFin1NA1+NA1N+N=1A1N
40 hashfz1 A1N01A1N=A1N
41 28 40 syl N0AFin1NA1A1N=A1N
42 25 39 41 3eqtrd N0AFin1NAN+1A=A1N
43 fzfi N+1AFin
44 hashen N+1AFinA1NFinN+1A=A1NN+1AA1N
45 43 8 44 sylancr N0AFin1NAN+1A=A1NN+1AA1N
46 42 45 mpbid N0AFin1NAN+1AA1N
47 bren N+1AA1Naa:N+1A1-1 ontoA1N
48 46 47 sylib N0AFin1NAaa:N+1A1-1 ontoA1N
49 simpl1 N0AFin1NAa:N+1A1-1 ontoA1NN0
50 49 nn0zd N0AFin1NAa:N+1A1-1 ontoA1NN
51 simpl2 N0AFin1NAa:N+1A1-1 ontoA1NAFin
52 hashcl AFinA0
53 51 52 syl N0AFin1NAa:N+1A1-1 ontoA1NA0
54 53 nn0zd N0AFin1NAa:N+1A1-1 ontoA1NA
55 nn0addge2 NA1N0NA1N+N
56 2 28 55 syl2anc N0AFin1NANA1N+N
57 56 23 breqtrrd N0AFin1NANA
58 57 adantr N0AFin1NAa:N+1A1-1 ontoA1NNA
59 eluz2 ANNANA
60 50 54 58 59 syl3anbrc N0AFin1NAa:N+1A1-1 ontoA1NAN
61 vex aV
62 ovex 1NV
63 resiexg 1NVI1NV
64 62 63 ax-mp I1NV
65 61 64 unex aI1NV
66 65 a1i N0AFin1NAa:N+1A1-1 ontoA1NaI1NV
67 simpr N0AFin1NAa:N+1A1-1 ontoA1Na:N+1A1-1 ontoA1N
68 f1oi I1N:1N1-1 onto1N
69 68 a1i N0AFin1NAa:N+1A1-1 ontoA1NI1N:1N1-1 onto1N
70 incom N+1A1N=1NN+1A
71 49 nn0red N0AFin1NAa:N+1A1-1 ontoA1NN
72 71 ltp1d N0AFin1NAa:N+1A1-1 ontoA1NN<N+1
73 fzdisj N<N+11NN+1A=
74 72 73 syl N0AFin1NAa:N+1A1-1 ontoA1N1NN+1A=
75 70 74 eqtrid N0AFin1NAa:N+1A1-1 ontoA1NN+1A1N=
76 10 a1i N0AFin1NAa:N+1A1-1 ontoA1NA1N1N=
77 f1oun a:N+1A1-1 ontoA1NI1N:1N1-1 onto1NN+1A1N=A1N1N=aI1N:N+1A1N1-1 ontoA1N1N
78 67 69 75 76 77 syl22anc N0AFin1NAa:N+1A1-1 ontoA1NaI1N:N+1A1N1-1 ontoA1N1N
79 uncom N+1A1N=1NN+1A
80 fzsplit1nn0 N0A0NA1A=1NN+1A
81 49 53 58 80 syl3anc N0AFin1NAa:N+1A1-1 ontoA1N1A=1NN+1A
82 79 81 eqtr4id N0AFin1NAa:N+1A1-1 ontoA1NN+1A1N=1A
83 simpl3 N0AFin1NAa:N+1A1-1 ontoA1N1NA
84 83 16 sylib N0AFin1NAa:N+1A1-1 ontoA1N1NA1N=A
85 14 84 eqtrid N0AFin1NAa:N+1A1-1 ontoA1NA1N1N=A
86 f1oeq23 N+1A1N=1AA1N1N=AaI1N:N+1A1N1-1 ontoA1N1NaI1N:1A1-1 ontoA
87 82 85 86 syl2anc N0AFin1NAa:N+1A1-1 ontoA1NaI1N:N+1A1N1-1 ontoA1N1NaI1N:1A1-1 ontoA
88 78 87 mpbid N0AFin1NAa:N+1A1-1 ontoA1NaI1N:1A1-1 ontoA
89 resundir aI1N1N=a1NI1N1N
90 dmres doma1N=1Ndoma
91 f1odm a:N+1A1-1 ontoA1Ndoma=N+1A
92 91 adantl N0AFin1NAa:N+1A1-1 ontoA1Ndoma=N+1A
93 92 ineq2d N0AFin1NAa:N+1A1-1 ontoA1N1Ndoma=1NN+1A
94 93 74 eqtrd N0AFin1NAa:N+1A1-1 ontoA1N1Ndoma=
95 90 94 eqtrid N0AFin1NAa:N+1A1-1 ontoA1Ndoma1N=
96 relres Rela1N
97 reldm0 Rela1Na1N=doma1N=
98 96 97 ax-mp a1N=doma1N=
99 95 98 sylibr N0AFin1NAa:N+1A1-1 ontoA1Na1N=
100 residm I1N1N=I1N
101 100 a1i N0AFin1NAa:N+1A1-1 ontoA1NI1N1N=I1N
102 99 101 uneq12d N0AFin1NAa:N+1A1-1 ontoA1Na1NI1N1N=I1N
103 uncom I1N=I1N
104 un0 I1N=I1N
105 103 104 eqtri I1N=I1N
106 102 105 eqtrdi N0AFin1NAa:N+1A1-1 ontoA1Na1NI1N1N=I1N
107 89 106 eqtrid N0AFin1NAa:N+1A1-1 ontoA1NaI1N1N=I1N
108 oveq2 d=A1d=1A
109 108 f1oeq2d d=Ae:1d1-1 ontoAe:1A1-1 ontoA
110 109 anbi1d d=Ae:1d1-1 ontoAe1N=I1Ne:1A1-1 ontoAe1N=I1N
111 f1oeq1 e=aI1Ne:1A1-1 ontoAaI1N:1A1-1 ontoA
112 reseq1 e=aI1Ne1N=aI1N1N
113 112 eqeq1d e=aI1Ne1N=I1NaI1N1N=I1N
114 111 113 anbi12d e=aI1Ne:1A1-1 ontoAe1N=I1NaI1N:1A1-1 ontoAaI1N1N=I1N
115 110 114 rspc2ev ANaI1NVaI1N:1A1-1 ontoAaI1N1N=I1NdNeVe:1d1-1 ontoAe1N=I1N
116 60 66 88 107 115 syl112anc N0AFin1NAa:N+1A1-1 ontoA1NdNeVe:1d1-1 ontoAe1N=I1N
117 48 116 exlimddv N0AFin1NAdNeVe:1d1-1 ontoAe1N=I1N