Metamath Proof Explorer


Theorem etransclem18

Description: The given function is integrable. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem18.s φ
etransclem18.x φTopOpenfld𝑡
etransclem18.p φP
etransclem18.m φM0
etransclem18.f F=xxP1j=1MxjP
etransclem18.a φA
etransclem18.b φB
Assertion etransclem18 φxABexFx𝐿1

Proof

Step Hyp Ref Expression
1 etransclem18.s φ
2 etransclem18.x φTopOpenfld𝑡
3 etransclem18.p φP
4 etransclem18.m φM0
5 etransclem18.f F=xxP1j=1MxjP
6 etransclem18.a φA
7 etransclem18.b φB
8 ioossicc ABAB
9 8 a1i φABAB
10 ioombl ABdomvol
11 10 a1i φABdomvol
12 ere e
13 12 recni e
14 13 a1i φxABe
15 6 7 iccssred φAB
16 15 sselda φxABx
17 16 recnd φxABx
18 17 negcld φxABx
19 14 18 cxpcld φxABex
20 1 2 dvdmsscn φ
21 20 3 5 etransclem8 φF:
22 21 adantr φxABF:
23 22 16 ffvelcdmd φxABFx
24 19 23 mulcld φxABexFx
25 eqidd φxAByey=yey
26 oveq2 y=xey=ex
27 26 adantl φxABy=xey=ex
28 15 20 sstrd φAB
29 28 sselda φxABx
30 29 negcld φxABx
31 13 a1i xe
32 negcl xx
33 31 32 cxpcld xex
34 29 33 syl φxABex
35 25 27 30 34 fvmptd φxAByeyx=ex
36 35 eqcomd φxABex=yeyx
37 36 mpteq2dva φxABex=xAByeyx
38 epr e+
39 mnfxr −∞*
40 39 a1i e+−∞*
41 0red e+0
42 rpxr e+e*
43 rpgt0 e+0<e
44 40 41 42 43 gtnelioc e+¬e−∞0
45 38 44 ax-mp ¬e−∞0
46 eldif e−∞0e¬e−∞0
47 13 45 46 mpbir2an e−∞0
48 cxpcncf2 e−∞0yey:cn
49 47 48 mp1i φyey:cn
50 eqid xABx=xABx
51 50 negcncf ABxABx:ABcn
52 28 51 syl φxABx:ABcn
53 49 52 cncfmpt1f φxAByeyx:ABcn
54 37 53 eqeltrd φxABex:ABcn
55 ax-resscn
56 55 a1i φxAB
57 3 adantr φxABP
58 4 adantr φxABM0
59 etransclem6 xxP1j=1MxjP=yyP1k=1MykP
60 5 59 eqtri F=yyP1k=1MykP
61 56 57 58 60 16 etransclem13 φxABFx=k=0Mxkifk=0P1P
62 61 mpteq2dva φxABFx=xABk=0Mxkifk=0P1P
63 fzfid φ0MFin
64 17 3adant3 φxABk0Mx
65 elfzelz k0Mk
66 65 zcnd k0Mk
67 66 3ad2ant3 φxABk0Mk
68 64 67 subcld φxABk0Mxk
69 nnm1nn0 PP10
70 3 69 syl φP10
71 3 nnnn0d φP0
72 70 71 ifcld φifk=0P1P0
73 72 3ad2ant1 φxABk0Mifk=0P1P0
74 68 73 expcld φxABk0Mxkifk=0P1P
75 nfv xφk0M
76 ssid
77 76 a1i φ
78 28 77 idcncfg φxABx:ABcn
79 78 adantr φk0MxABx:ABcn
80 28 adantr φk0MAB
81 66 adantl φk0Mk
82 76 a1i φk0M
83 80 81 82 constcncfg φk0MxABk:ABcn
84 79 83 subcncf φk0MxABxk:ABcn
85 expcncf ifk=0P1P0yyifk=0P1P:cn
86 72 85 syl φyyifk=0P1P:cn
87 86 adantr φk0Myyifk=0P1P:cn
88 oveq1 y=xkyifk=0P1P=xkifk=0P1P
89 75 84 87 82 88 cncfcompt2 φk0MxABxkifk=0P1P:ABcn
90 28 63 74 89 fprodcncf φxABk=0Mxkifk=0P1P:ABcn
91 62 90 eqeltrd φxABFx:ABcn
92 54 91 mulcncf φxABexFx:ABcn
93 cniccibl ABxABexFx:ABcnxABexFx𝐿1
94 6 7 92 93 syl3anc φxABexFx𝐿1
95 9 11 24 94 iblss φxABexFx𝐿1