Metamath Proof Explorer


Theorem fmfnfm

Description: A filter finer than an image filter is an image filter of the same function. (Contributed by Jeff Hankins, 13-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φ B fBas Y
fmfnfm.l φ L Fil X
fmfnfm.f φ F : Y X
fmfnfm.fm φ X FilMap F B L
Assertion fmfnfm φ f Fil Y B f L = X FilMap F f

Proof

Step Hyp Ref Expression
1 fmfnfm.b φ B fBas Y
2 fmfnfm.l φ L Fil X
3 fmfnfm.f φ F : Y X
4 fmfnfm.fm φ X FilMap F B L
5 fbsspw B fBas Y B 𝒫 Y
6 1 5 syl φ B 𝒫 Y
7 elfvdm B fBas Y Y dom fBas
8 1 7 syl φ Y dom fBas
9 ffn F : Y X F Fn Y
10 dffn4 F Fn Y F : Y onto ran F
11 9 10 sylib F : Y X F : Y onto ran F
12 foima F : Y onto ran F F Y = ran F
13 3 11 12 3syl φ F Y = ran F
14 filtop L Fil X X L
15 2 14 syl φ X L
16 fgcl B fBas Y Y filGen B Fil Y
17 filtop Y filGen B Fil Y Y Y filGen B
18 1 16 17 3syl φ Y Y filGen B
19 eqid Y filGen B = Y filGen B
20 19 imaelfm X L B fBas Y F : Y X Y Y filGen B F Y X FilMap F B
21 15 1 3 18 20 syl31anc φ F Y X FilMap F B
22 13 21 eqeltrrd φ ran F X FilMap F B
23 4 22 sseldd φ ran F L
24 rnelfmlem Y dom fBas L Fil X F : Y X ran F L ran x L F -1 x fBas Y
25 8 2 3 23 24 syl31anc φ ran x L F -1 x fBas Y
26 fbsspw ran x L F -1 x fBas Y ran x L F -1 x 𝒫 Y
27 25 26 syl φ ran x L F -1 x 𝒫 Y
28 6 27 unssd φ B ran x L F -1 x 𝒫 Y
29 ssun1 B B ran x L F -1 x
30 fbasne0 B fBas Y B
31 1 30 syl φ B
32 ssn0 B B ran x L F -1 x B B ran x L F -1 x
33 29 31 32 sylancr φ B ran x L F -1 x
34 eqid x L F -1 x = x L F -1 x
35 34 elrnmpt t V t ran x L F -1 x x L t = F -1 x
36 35 elv t ran x L F -1 x x L t = F -1 x
37 0nelfil L Fil X ¬ L
38 2 37 syl φ ¬ L
39 38 ad2antrr φ s B x L ¬ L
40 2 adantr φ s B L Fil X
41 4 adantr φ s B X FilMap F B L
42 15 1 3 3jca φ X L B fBas Y F : Y X
43 42 adantr φ s B X L B fBas Y F : Y X
44 ssfg B fBas Y B Y filGen B
45 1 44 syl φ B Y filGen B
46 45 sselda φ s B s Y filGen B
47 19 imaelfm X L B fBas Y F : Y X s Y filGen B F s X FilMap F B
48 43 46 47 syl2anc φ s B F s X FilMap F B
49 41 48 sseldd φ s B F s L
50 40 49 jca φ s B L Fil X F s L
51 filin L Fil X F s L x L F s x L
52 51 3expa L Fil X F s L x L F s x L
53 50 52 sylan φ s B x L F s x L
54 eleq1 F s x = F s x L L
55 53 54 syl5ibcom φ s B x L F s x = L
56 39 55 mtod φ s B x L ¬ F s x =
57 neq0 ¬ F s x = t t F s x
58 elin t F s x t F s t x
59 ffun F : Y X Fun F
60 fvelima Fun F t F s y s F y = t
61 60 ex Fun F t F s y s F y = t
62 3 59 61 3syl φ t F s y s F y = t
63 62 ad2antrr φ s B x L t F s y s F y = t
64 3 59 syl φ Fun F
65 64 ad3antrrr φ s B x L y s Fun F
66 fbelss B fBas Y s B s Y
67 1 66 sylan φ s B s Y
68 3 fdmd φ dom F = Y
69 68 adantr φ s B dom F = Y
70 67 69 sseqtrrd φ s B s dom F
71 70 adantr φ s B x L s dom F
72 71 sselda φ s B x L y s y dom F
73 fvimacnv Fun F y dom F F y x y F -1 x
74 65 72 73 syl2anc φ s B x L y s F y x y F -1 x
75 inelcm y s y F -1 x s F -1 x
76 75 ex y s y F -1 x s F -1 x
77 76 adantl φ s B x L y s y F -1 x s F -1 x
78 74 77 sylbid φ s B x L y s F y x s F -1 x
79 eleq1 F y = t F y x t x
80 79 imbi1d F y = t F y x s F -1 x t x s F -1 x
81 78 80 syl5ibcom φ s B x L y s F y = t t x s F -1 x
82 81 rexlimdva φ s B x L y s F y = t t x s F -1 x
83 63 82 syld φ s B x L t F s t x s F -1 x
84 83 impd φ s B x L t F s t x s F -1 x
85 58 84 syl5bi φ s B x L t F s x s F -1 x
86 85 exlimdv φ s B x L t t F s x s F -1 x
87 57 86 syl5bi φ s B x L ¬ F s x = s F -1 x
88 56 87 mpd φ s B x L s F -1 x
89 ineq2 t = F -1 x s t = s F -1 x
90 89 neeq1d t = F -1 x s t s F -1 x
91 88 90 syl5ibrcom φ s B x L t = F -1 x s t
92 91 rexlimdva φ s B x L t = F -1 x s t
93 36 92 syl5bi φ s B t ran x L F -1 x s t
94 93 expimpd φ s B t ran x L F -1 x s t
95 94 ralrimivv φ s B t ran x L F -1 x s t
96 fbunfip B fBas Y ran x L F -1 x fBas Y ¬ fi B ran x L F -1 x s B t ran x L F -1 x s t
97 1 25 96 syl2anc φ ¬ fi B ran x L F -1 x s B t ran x L F -1 x s t
98 95 97 mpbird φ ¬ fi B ran x L F -1 x
99 fsubbas Y dom fBas fi B ran x L F -1 x fBas Y B ran x L F -1 x 𝒫 Y B ran x L F -1 x ¬ fi B ran x L F -1 x
100 1 7 99 3syl φ fi B ran x L F -1 x fBas Y B ran x L F -1 x 𝒫 Y B ran x L F -1 x ¬ fi B ran x L F -1 x
101 28 33 98 100 mpbir3and φ fi B ran x L F -1 x fBas Y
102 fgcl fi B ran x L F -1 x fBas Y Y filGen fi B ran x L F -1 x Fil Y
103 101 102 syl φ Y filGen fi B ran x L F -1 x Fil Y
104 unexg B fBas Y ran x L F -1 x fBas Y B ran x L F -1 x V
105 1 25 104 syl2anc φ B ran x L F -1 x V
106 ssfii B ran x L F -1 x V B ran x L F -1 x fi B ran x L F -1 x
107 105 106 syl φ B ran x L F -1 x fi B ran x L F -1 x
108 107 unssad φ B fi B ran x L F -1 x
109 ssfg fi B ran x L F -1 x fBas Y fi B ran x L F -1 x Y filGen fi B ran x L F -1 x
110 101 109 syl φ fi B ran x L F -1 x Y filGen fi B ran x L F -1 x
111 108 110 sstrd φ B Y filGen fi B ran x L F -1 x
112 1 2 3 4 fmfnfmlem4 φ t L t X s fi B ran x L F -1 x F s t
113 elfm X L fi B ran x L F -1 x fBas Y F : Y X t X FilMap F fi B ran x L F -1 x t X s fi B ran x L F -1 x F s t
114 15 101 3 113 syl3anc φ t X FilMap F fi B ran x L F -1 x t X s fi B ran x L F -1 x F s t
115 112 114 bitr4d φ t L t X FilMap F fi B ran x L F -1 x
116 115 eqrdv φ L = X FilMap F fi B ran x L F -1 x
117 eqid Y filGen fi B ran x L F -1 x = Y filGen fi B ran x L F -1 x
118 117 fmfg X L fi B ran x L F -1 x fBas Y F : Y X X FilMap F fi B ran x L F -1 x = X FilMap F Y filGen fi B ran x L F -1 x
119 15 101 3 118 syl3anc φ X FilMap F fi B ran x L F -1 x = X FilMap F Y filGen fi B ran x L F -1 x
120 116 119 eqtrd φ L = X FilMap F Y filGen fi B ran x L F -1 x
121 sseq2 f = Y filGen fi B ran x L F -1 x B f B Y filGen fi B ran x L F -1 x
122 fveq2 f = Y filGen fi B ran x L F -1 x X FilMap F f = X FilMap F Y filGen fi B ran x L F -1 x
123 122 eqeq2d f = Y filGen fi B ran x L F -1 x L = X FilMap F f L = X FilMap F Y filGen fi B ran x L F -1 x
124 121 123 anbi12d f = Y filGen fi B ran x L F -1 x B f L = X FilMap F f B Y filGen fi B ran x L F -1 x L = X FilMap F Y filGen fi B ran x L F -1 x
125 124 rspcev Y filGen fi B ran x L F -1 x Fil Y B Y filGen fi B ran x L F -1 x L = X FilMap F Y filGen fi B ran x L F -1 x f Fil Y B f L = X FilMap F f
126 103 111 120 125 syl12anc φ f Fil Y B f L = X FilMap F f