| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmfnfm.b |
|
| 2 |
|
fmfnfm.l |
|
| 3 |
|
fmfnfm.f |
|
| 4 |
|
fmfnfm.fm |
|
| 5 |
|
fbsspw |
|
| 6 |
1 5
|
syl |
|
| 7 |
|
elfvdm |
|
| 8 |
1 7
|
syl |
|
| 9 |
|
ffn |
|
| 10 |
|
dffn4 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
foima |
|
| 13 |
3 11 12
|
3syl |
|
| 14 |
|
filtop |
|
| 15 |
2 14
|
syl |
|
| 16 |
|
fgcl |
|
| 17 |
|
filtop |
|
| 18 |
1 16 17
|
3syl |
|
| 19 |
|
eqid |
|
| 20 |
19
|
imaelfm |
|
| 21 |
15 1 3 18 20
|
syl31anc |
|
| 22 |
13 21
|
eqeltrrd |
|
| 23 |
4 22
|
sseldd |
|
| 24 |
|
rnelfmlem |
|
| 25 |
8 2 3 23 24
|
syl31anc |
|
| 26 |
|
fbsspw |
|
| 27 |
25 26
|
syl |
|
| 28 |
6 27
|
unssd |
|
| 29 |
|
ssun1 |
|
| 30 |
|
fbasne0 |
|
| 31 |
1 30
|
syl |
|
| 32 |
|
ssn0 |
|
| 33 |
29 31 32
|
sylancr |
|
| 34 |
|
eqid |
|
| 35 |
34
|
elrnmpt |
|
| 36 |
35
|
elv |
|
| 37 |
|
0nelfil |
|
| 38 |
2 37
|
syl |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
2
|
adantr |
|
| 41 |
4
|
adantr |
|
| 42 |
15 1 3
|
3jca |
|
| 43 |
42
|
adantr |
|
| 44 |
|
ssfg |
|
| 45 |
1 44
|
syl |
|
| 46 |
45
|
sselda |
|
| 47 |
19
|
imaelfm |
|
| 48 |
43 46 47
|
syl2anc |
|
| 49 |
41 48
|
sseldd |
|
| 50 |
40 49
|
jca |
|
| 51 |
|
filin |
|
| 52 |
51
|
3expa |
|
| 53 |
50 52
|
sylan |
|
| 54 |
|
eleq1 |
|
| 55 |
53 54
|
syl5ibcom |
|
| 56 |
39 55
|
mtod |
|
| 57 |
|
neq0 |
|
| 58 |
|
elin |
|
| 59 |
|
ffun |
|
| 60 |
|
fvelima |
|
| 61 |
60
|
ex |
|
| 62 |
3 59 61
|
3syl |
|
| 63 |
62
|
ad2antrr |
|
| 64 |
3 59
|
syl |
|
| 65 |
64
|
ad3antrrr |
|
| 66 |
|
fbelss |
|
| 67 |
1 66
|
sylan |
|
| 68 |
3
|
fdmd |
|
| 69 |
68
|
adantr |
|
| 70 |
67 69
|
sseqtrrd |
|
| 71 |
70
|
adantr |
|
| 72 |
71
|
sselda |
|
| 73 |
|
fvimacnv |
|
| 74 |
65 72 73
|
syl2anc |
|
| 75 |
|
inelcm |
|
| 76 |
75
|
ex |
|
| 77 |
76
|
adantl |
|
| 78 |
74 77
|
sylbid |
|
| 79 |
|
eleq1 |
|
| 80 |
79
|
imbi1d |
|
| 81 |
78 80
|
syl5ibcom |
|
| 82 |
81
|
rexlimdva |
|
| 83 |
63 82
|
syld |
|
| 84 |
83
|
impd |
|
| 85 |
58 84
|
biimtrid |
|
| 86 |
85
|
exlimdv |
|
| 87 |
57 86
|
biimtrid |
|
| 88 |
56 87
|
mpd |
|
| 89 |
|
ineq2 |
|
| 90 |
89
|
neeq1d |
|
| 91 |
88 90
|
syl5ibrcom |
|
| 92 |
91
|
rexlimdva |
|
| 93 |
36 92
|
biimtrid |
|
| 94 |
93
|
expimpd |
|
| 95 |
94
|
ralrimivv |
|
| 96 |
|
fbunfip |
|
| 97 |
1 25 96
|
syl2anc |
|
| 98 |
95 97
|
mpbird |
|
| 99 |
|
fsubbas |
|
| 100 |
1 7 99
|
3syl |
|
| 101 |
28 33 98 100
|
mpbir3and |
|
| 102 |
|
fgcl |
|
| 103 |
101 102
|
syl |
|
| 104 |
|
unexg |
|
| 105 |
1 25 104
|
syl2anc |
|
| 106 |
|
ssfii |
|
| 107 |
105 106
|
syl |
|
| 108 |
107
|
unssad |
|
| 109 |
|
ssfg |
|
| 110 |
101 109
|
syl |
|
| 111 |
108 110
|
sstrd |
|
| 112 |
1 2 3 4
|
fmfnfmlem4 |
|
| 113 |
|
elfm |
|
| 114 |
15 101 3 113
|
syl3anc |
|
| 115 |
112 114
|
bitr4d |
|
| 116 |
115
|
eqrdv |
|
| 117 |
|
eqid |
|
| 118 |
117
|
fmfg |
|
| 119 |
15 101 3 118
|
syl3anc |
|
| 120 |
116 119
|
eqtrd |
|
| 121 |
|
sseq2 |
|
| 122 |
|
fveq2 |
|
| 123 |
122
|
eqeq2d |
|
| 124 |
121 123
|
anbi12d |
|
| 125 |
124
|
rspcev |
|
| 126 |
103 111 120 125
|
syl12anc |
|