Metamath Proof Explorer


Theorem fourierdlem47

Description: For r large enough, the final expression is less than the given positive E . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem47.ibl φxIF𝐿1
fourierdlem47.iblmul φrxIFG𝐿1
fourierdlem47.f φxIF
fourierdlem47.g φxIrG
fourierdlem47.absg φxIrG1
fourierdlem47.a φA
fourierdlem47.x X=A
fourierdlem47.c φC
fourierdlem47.y Y=C
fourierdlem47.z Z=IFdx
fourierdlem47.e φE+
fourierdlem47.b φrB
fourierdlem47.absb φrB1
fourierdlem47.d φrD
fourierdlem47.absd φrD1
fourierdlem47.m M=X+Y+ZE+1+1
Assertion fourierdlem47 φmrm+∞ABr-CDr-IFGrdx<E

Proof

Step Hyp Ref Expression
1 fourierdlem47.ibl φxIF𝐿1
2 fourierdlem47.iblmul φrxIFG𝐿1
3 fourierdlem47.f φxIF
4 fourierdlem47.g φxIrG
5 fourierdlem47.absg φxIrG1
6 fourierdlem47.a φA
7 fourierdlem47.x X=A
8 fourierdlem47.c φC
9 fourierdlem47.y Y=C
10 fourierdlem47.z Z=IFdx
11 fourierdlem47.e φE+
12 fourierdlem47.b φrB
13 fourierdlem47.absb φrB1
14 fourierdlem47.d φrD
15 fourierdlem47.absd φrD1
16 fourierdlem47.m M=X+Y+ZE+1+1
17 6 abscld φA
18 7 17 eqeltrid φX
19 8 abscld φC
20 9 19 eqeltrid φY
21 18 20 readdcld φX+Y
22 3 abscld φxIF
23 3 1 iblabs φxIF𝐿1
24 22 23 itgrecl φIFdx
25 10 24 eqeltrid φZ
26 21 25 readdcld φX+Y+Z
27 11 rpred φE
28 11 rpne0d φE0
29 26 27 28 redivcld φX+Y+ZE
30 1red φ1
31 29 30 readdcld φX+Y+ZE+1
32 31 flcld φX+Y+ZE+1
33 0red φ0
34 reflcl X+Y+ZE+1X+Y+ZE+1
35 31 34 syl φX+Y+ZE+1
36 0lt1 0<1
37 36 a1i φ0<1
38 6 absge0d φ0A
39 38 7 breqtrrdi φ0X
40 8 absge0d φ0C
41 40 9 breqtrrdi φ0Y
42 18 20 39 41 addge0d φ0X+Y
43 3 absge0d φxI0F
44 23 22 43 itgge0 φ0IFdx
45 44 10 breqtrrdi φ0Z
46 21 25 42 45 addge0d φ0X+Y+Z
47 26 11 46 divge0d φ0X+Y+ZE
48 flge0nn0 X+Y+ZE0X+Y+ZEX+Y+ZE0
49 29 47 48 syl2anc φX+Y+ZE0
50 nn0addge1 1X+Y+ZE011+X+Y+ZE
51 30 49 50 syl2anc φ11+X+Y+ZE
52 1z 1
53 fladdz X+Y+ZE1X+Y+ZE+1=X+Y+ZE+1
54 29 52 53 sylancl φX+Y+ZE+1=X+Y+ZE+1
55 49 nn0cnd φX+Y+ZE
56 30 recnd φ1
57 55 56 addcomd φX+Y+ZE+1=1+X+Y+ZE
58 54 57 eqtr2d φ1+X+Y+ZE=X+Y+ZE+1
59 51 58 breqtrd φ1X+Y+ZE+1
60 33 30 35 37 59 ltletrd φ0<X+Y+ZE+1
61 elnnz X+Y+ZE+1X+Y+ZE+10<X+Y+ZE+1
62 32 60 61 sylanbrc φX+Y+ZE+1
63 62 peano2nnd φX+Y+ZE+1+1
64 16 63 eqeltrid φM
65 elioore rM+∞r
66 65 2 sylan2 φrM+∞xIFG𝐿1
67 3 adantlr φrM+∞xIF
68 simpll φrM+∞xIφ
69 simpr φrM+∞xIxI
70 65 ad2antlr φrM+∞xIr
71 70 recnd φrM+∞xIr
72 68 69 71 4 syl21anc φrM+∞xIG
73 6 adantr φrM+∞A
74 8 adantr φrM+∞C
75 eqid IFGdx=IFGdx
76 11 adantr φrM+∞E+
77 65 adantl φrM+∞r
78 7 eqcomi A=X
79 9 eqcomi C=Y
80 78 79 oveq12i A+C=X+Y
81 80 oveq1i A+C+IFGdx=X+Y+IFGdx
82 17 adantr φrM+∞A
83 19 adantr φrM+∞C
84 82 83 readdcld φrM+∞A+C
85 72 negcld φrM+∞xIG
86 67 85 mulcld φrM+∞xIFG
87 86 66 itgcl φrM+∞IFGdx
88 87 abscld φrM+∞IFGdx
89 84 88 readdcld φrM+∞A+C+IFGdx
90 81 89 eqeltrrid φrM+∞X+Y+IFGdx
91 27 adantr φrM+∞E
92 28 adantr φrM+∞E0
93 90 91 92 redivcld φrM+∞X+Y+IFGdxE
94 1red φrM+∞1
95 93 94 readdcld φrM+∞X+Y+IFGdxE+1
96 7 82 eqeltrid φrM+∞X
97 9 83 eqeltrid φrM+∞Y
98 96 97 readdcld φrM+∞X+Y
99 25 adantr φrM+∞Z
100 98 99 readdcld φrM+∞X+Y+Z
101 100 91 92 redivcld φrM+∞X+Y+ZE
102 101 94 readdcld φrM+∞X+Y+ZE+1
103 102 34 syl φrM+∞X+Y+ZE+1
104 103 94 readdcld φrM+∞X+Y+ZE+1+1
105 16 104 eqeltrid φrM+∞M
106 86 abscld φrM+∞xIFG
107 86 66 iblabs φrM+∞xIFG𝐿1
108 106 107 itgrecl φrM+∞IFGdx
109 86 66 itgabs φrM+∞IFGdxIFGdx
110 23 adantr φrM+∞xIF𝐿1
111 67 abscld φrM+∞xIF
112 67 85 absmuld φrM+∞xIFG=FG
113 85 abscld φrM+∞xIG
114 1red φrM+∞xI1
115 67 absge0d φrM+∞xI0F
116 recn rr
117 116 4 sylan2 φxIrG
118 117 absnegd φxIrG=G
119 118 5 eqbrtrd φxIrG1
120 68 69 70 119 syl21anc φrM+∞xIG1
121 113 114 111 115 120 lemul2ad φrM+∞xIFGF1
122 111 recnd φrM+∞xIF
123 122 mulridd φrM+∞xIF1=F
124 121 123 breqtrd φrM+∞xIFGF
125 112 124 eqbrtrd φrM+∞xIFGF
126 107 110 106 111 125 itgle φrM+∞IFGdxIFdx
127 126 10 breqtrrdi φrM+∞IFGdxZ
128 88 108 99 109 127 letrd φrM+∞IFGdxZ
129 88 99 98 128 leadd2dd φrM+∞X+Y+IFGdxX+Y+Z
130 90 100 76 129 lediv1dd φrM+∞X+Y+IFGdxEX+Y+ZE
131 flltp1 X+Y+ZEX+Y+ZE<X+Y+ZE+1
132 101 131 syl φrM+∞X+Y+ZE<X+Y+ZE+1
133 101 52 53 sylancl φrM+∞X+Y+ZE+1=X+Y+ZE+1
134 132 133 breqtrrd φrM+∞X+Y+ZE<X+Y+ZE+1
135 93 101 103 130 134 lelttrd φrM+∞X+Y+IFGdxE<X+Y+ZE+1
136 93 103 94 135 ltadd1dd φrM+∞X+Y+IFGdxE+1<X+Y+ZE+1+1
137 136 16 breqtrrdi φrM+∞X+Y+IFGdxE+1<M
138 105 rexrd φrM+∞M*
139 pnfxr +∞*
140 139 a1i φrM+∞+∞*
141 simpr φrM+∞rM+∞
142 ioogtlb M*+∞*rM+∞M<r
143 138 140 141 142 syl3anc φrM+∞M<r
144 95 105 77 137 143 lttrd φrM+∞X+Y+IFGdxE+1<r
145 95 77 144 ltled φrM+∞X+Y+IFGdxE+1r
146 77 recnd φrM+∞r
147 146 12 syldan φrM+∞B
148 65 13 sylan2 φrM+∞B1
149 146 14 syldan φrM+∞D
150 65 15 sylan2 φrM+∞D1
151 66 67 72 73 7 74 9 75 76 77 145 147 148 149 150 fourierdlem30 φrM+∞ABr-CDr-IFGrdx<E
152 151 ralrimiva φrM+∞ABr-CDr-IFGrdx<E
153 oveq1 m=Mm+∞=M+∞
154 153 raleqdv m=Mrm+∞ABr-CDr-IFGrdx<ErM+∞ABr-CDr-IFGrdx<E
155 154 rspcev MrM+∞ABr-CDr-IFGrdx<Emrm+∞ABr-CDr-IFGrdx<E
156 64 152 155 syl2anc φmrm+∞ABr-CDr-IFGrdx<E