Metamath Proof Explorer


Theorem fourierdlem48

Description: The given periodic function F has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem48.a φ A
fourierdlem48.b φ B
fourierdlem48.altb φ A < B
fourierdlem48.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem48.t T = B A
fourierdlem48.m φ M
fourierdlem48.q φ Q P M
fourierdlem48.f φ F : D
fourierdlem48.dper φ x D k x + k T D
fourierdlem48.per φ x D k F x + k T = F x
fourierdlem48.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem48.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
fourierdlem48.x φ X
fourierdlem48.z Z = x B x T T
fourierdlem48.e E = x x + Z x
fourierdlem48.ch χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
Assertion fourierdlem48 φ F X +∞ lim X

Proof

Step Hyp Ref Expression
1 fourierdlem48.a φ A
2 fourierdlem48.b φ B
3 fourierdlem48.altb φ A < B
4 fourierdlem48.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
5 fourierdlem48.t T = B A
6 fourierdlem48.m φ M
7 fourierdlem48.q φ Q P M
8 fourierdlem48.f φ F : D
9 fourierdlem48.dper φ x D k x + k T D
10 fourierdlem48.per φ x D k F x + k T = F x
11 fourierdlem48.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
12 fourierdlem48.r φ i 0 ..^ M R F Q i Q i + 1 lim Q i
13 fourierdlem48.x φ X
14 fourierdlem48.z Z = x B x T T
15 fourierdlem48.e E = x x + Z x
16 fourierdlem48.ch χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
17 simpl φ E X = B φ
18 0zd φ 0
19 6 nnzd φ M
20 6 nngt0d φ 0 < M
21 fzolb 0 0 ..^ M 0 M 0 < M
22 18 19 20 21 syl3anbrc φ 0 0 ..^ M
23 22 adantr φ E X = B 0 0 ..^ M
24 2 13 resubcld φ B X
25 2 1 resubcld φ B A
26 5 25 eqeltrid φ T
27 1 2 posdifd φ A < B 0 < B A
28 3 27 mpbid φ 0 < B A
29 28 5 breqtrrdi φ 0 < T
30 29 gt0ne0d φ T 0
31 24 26 30 redivcld φ B X T
32 31 adantr φ E X = B B X T
33 32 flcld φ E X = B B X T
34 1zzd φ E X = B 1
35 33 34 zsubcld φ E X = B B X T 1
36 id E X = B E X = B
37 5 a1i E X = B T = B A
38 36 37 oveq12d E X = B E X T = B B A
39 2 recnd φ B
40 1 recnd φ A
41 39 40 nncand φ B B A = A
42 38 41 sylan9eqr φ E X = B E X T = A
43 4 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
44 6 43 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
45 7 44 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
46 45 simpld φ Q 0 M
47 elmapi Q 0 M Q : 0 M
48 46 47 syl φ Q : 0 M
49 6 nnnn0d φ M 0
50 nn0uz 0 = 0
51 49 50 eleqtrdi φ M 0
52 eluzfz1 M 0 0 0 M
53 51 52 syl φ 0 0 M
54 48 53 ffvelrnd φ Q 0
55 54 rexrd φ Q 0 *
56 1zzd φ 1
57 0le1 0 1
58 57 a1i φ 0 1
59 6 nnge1d φ 1 M
60 18 19 56 58 59 elfzd φ 1 0 M
61 48 60 ffvelrnd φ Q 1
62 61 rexrd φ Q 1 *
63 1 rexrd φ A *
64 45 simprd φ Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
65 64 simplld φ Q 0 = A
66 1 leidd φ A A
67 65 66 eqbrtrd φ Q 0 A
68 65 eqcomd φ A = Q 0
69 0re 0
70 eleq1 i = 0 i 0 ..^ M 0 0 ..^ M
71 70 anbi2d i = 0 φ i 0 ..^ M φ 0 0 ..^ M
72 fveq2 i = 0 Q i = Q 0
73 oveq1 i = 0 i + 1 = 0 + 1
74 73 fveq2d i = 0 Q i + 1 = Q 0 + 1
75 72 74 breq12d i = 0 Q i < Q i + 1 Q 0 < Q 0 + 1
76 71 75 imbi12d i = 0 φ i 0 ..^ M Q i < Q i + 1 φ 0 0 ..^ M Q 0 < Q 0 + 1
77 45 simprrd φ i 0 ..^ M Q i < Q i + 1
78 77 r19.21bi φ i 0 ..^ M Q i < Q i + 1
79 76 78 vtoclg 0 φ 0 0 ..^ M Q 0 < Q 0 + 1
80 69 79 ax-mp φ 0 0 ..^ M Q 0 < Q 0 + 1
81 22 80 mpdan φ Q 0 < Q 0 + 1
82 1e0p1 1 = 0 + 1
83 82 fveq2i Q 1 = Q 0 + 1
84 81 83 breqtrrdi φ Q 0 < Q 1
85 68 84 eqbrtrd φ A < Q 1
86 55 62 63 67 85 elicod φ A Q 0 Q 1
87 83 oveq2i Q 0 Q 1 = Q 0 Q 0 + 1
88 86 87 eleqtrdi φ A Q 0 Q 0 + 1
89 88 adantr φ E X = B A Q 0 Q 0 + 1
90 42 89 eqeltrd φ E X = B E X T Q 0 Q 0 + 1
91 15 a1i φ E = x x + Z x
92 id x = X x = X
93 fveq2 x = X Z x = Z X
94 92 93 oveq12d x = X x + Z x = X + Z X
95 94 adantl φ x = X x + Z x = X + Z X
96 14 a1i φ Z = x B x T T
97 oveq2 x = X B x = B X
98 97 oveq1d x = X B x T = B X T
99 98 fveq2d x = X B x T = B X T
100 99 oveq1d x = X B x T T = B X T T
101 100 adantl φ x = X B x T T = B X T T
102 31 flcld φ B X T
103 102 zred φ B X T
104 103 26 remulcld φ B X T T
105 96 101 13 104 fvmptd φ Z X = B X T T
106 105 104 eqeltrd φ Z X
107 13 106 readdcld φ X + Z X
108 91 95 13 107 fvmptd φ E X = X + Z X
109 105 oveq2d φ X + Z X = X + B X T T
110 108 109 eqtrd φ E X = X + B X T T
111 110 oveq1d φ E X T = X + B X T T - T
112 13 recnd φ X
113 104 recnd φ B X T T
114 26 recnd φ T
115 112 113 114 addsubassd φ X + B X T T - T = X + B X T T - T
116 102 zcnd φ B X T
117 116 114 mulsubfacd φ B X T T T = B X T 1 T
118 117 oveq2d φ X + B X T T - T = X + B X T 1 T
119 111 115 118 3eqtrd φ E X T = X + B X T 1 T
120 119 adantr φ E X = B E X T = X + B X T 1 T
121 oveq1 k = B X T 1 k T = B X T 1 T
122 121 oveq2d k = B X T 1 X + k T = X + B X T 1 T
123 122 eqeq2d k = B X T 1 E X T = X + k T E X T = X + B X T 1 T
124 123 anbi2d k = B X T 1 E X T Q 0 Q 0 + 1 E X T = X + k T E X T Q 0 Q 0 + 1 E X T = X + B X T 1 T
125 124 rspcev B X T 1 E X T Q 0 Q 0 + 1 E X T = X + B X T 1 T k E X T Q 0 Q 0 + 1 E X T = X + k T
126 35 90 120 125 syl12anc φ E X = B k E X T Q 0 Q 0 + 1 E X T = X + k T
127 72 74 oveq12d i = 0 Q i Q i + 1 = Q 0 Q 0 + 1
128 127 eleq2d i = 0 E X T Q i Q i + 1 E X T Q 0 Q 0 + 1
129 128 anbi1d i = 0 E X T Q i Q i + 1 E X T = X + k T E X T Q 0 Q 0 + 1 E X T = X + k T
130 129 rexbidv i = 0 k E X T Q i Q i + 1 E X T = X + k T k E X T Q 0 Q 0 + 1 E X T = X + k T
131 130 rspcev 0 0 ..^ M k E X T Q 0 Q 0 + 1 E X T = X + k T i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
132 23 126 131 syl2anc φ E X = B i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
133 ovex E X T V
134 eleq1 y = E X T y Q i Q i + 1 E X T Q i Q i + 1
135 eqeq1 y = E X T y = X + k T E X T = X + k T
136 134 135 anbi12d y = E X T y Q i Q i + 1 y = X + k T E X T Q i Q i + 1 E X T = X + k T
137 136 2rexbidv y = E X T i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
138 137 anbi2d y = E X T φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T
139 138 imbi1d y = E X T φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T F X +∞ lim X
140 simpr φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T
141 nfv i φ
142 nfre1 i i 0 ..^ M k y Q i Q i + 1 y = X + k T
143 141 142 nfan i φ i 0 ..^ M k y Q i Q i + 1 y = X + k T
144 nfv k φ
145 nfcv _ k 0 ..^ M
146 nfre1 k k y Q i Q i + 1 y = X + k T
147 145 146 nfrex k i 0 ..^ M k y Q i Q i + 1 y = X + k T
148 144 147 nfan k φ i 0 ..^ M k y Q i Q i + 1 y = X + k T
149 simp1 φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ
150 simp2l φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M
151 simp3l φ i 0 ..^ M k y Q i Q i + 1 y = X + k T y Q i Q i + 1
152 149 150 151 jca31 φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M y Q i Q i + 1
153 simp2r φ i 0 ..^ M k y Q i Q i + 1 y = X + k T k
154 simp3r φ i 0 ..^ M k y Q i Q i + 1 y = X + k T y = X + k T
155 16 biimpi χ φ i 0 ..^ M y Q i Q i + 1 k y = X + k T
156 155 simplld χ φ i 0 ..^ M y Q i Q i + 1
157 156 simplld χ φ
158 frel F : D Rel F
159 157 8 158 3syl χ Rel F
160 resindm Rel F F X +∞ dom F = F X +∞
161 160 eqcomd Rel F F X +∞ = F X +∞ dom F
162 159 161 syl χ F X +∞ = F X +∞ dom F
163 fdm F : D dom F = D
164 157 8 163 3syl χ dom F = D
165 164 ineq2d χ X +∞ dom F = X +∞ D
166 165 reseq2d χ F X +∞ dom F = F X +∞ D
167 162 166 eqtrd χ F X +∞ = F X +∞ D
168 167 oveq1d χ F X +∞ lim X = F X +∞ D lim X
169 157 8 syl χ F : D
170 ax-resscn
171 170 a1i χ
172 169 171 fssd χ F : D
173 inss2 X +∞ D D
174 173 a1i χ X +∞ D D
175 172 174 fssresd χ F X +∞ D : X +∞ D
176 pnfxr +∞ *
177 176 a1i χ +∞ *
178 156 simplrd χ i 0 ..^ M
179 48 adantr φ i 0 ..^ M Q : 0 M
180 fzofzp1 i 0 ..^ M i + 1 0 M
181 180 adantl φ i 0 ..^ M i + 1 0 M
182 179 181 ffvelrnd φ i 0 ..^ M Q i + 1
183 157 178 182 syl2anc χ Q i + 1
184 155 simplrd χ k
185 184 zred χ k
186 157 26 syl χ T
187 185 186 remulcld χ k T
188 183 187 resubcld χ Q i + 1 k T
189 188 rexrd χ Q i + 1 k T *
190 188 ltpnfd χ Q i + 1 k T < +∞
191 189 177 190 xrltled χ Q i + 1 k T +∞
192 iooss2 +∞ * Q i + 1 k T +∞ X Q i + 1 k T X +∞
193 177 191 192 syl2anc χ X Q i + 1 k T X +∞
194 184 adantr χ w X Q i + 1 k T k
195 194 zcnd χ w X Q i + 1 k T k
196 186 recnd χ T
197 196 adantr χ w X Q i + 1 k T T
198 195 197 mulneg1d χ w X Q i + 1 k T k T = k T
199 198 oveq2d χ w X Q i + 1 k T w + k T + k T = w + k T + k T
200 elioore w X Q i + 1 k T w
201 200 recnd w X Q i + 1 k T w
202 201 adantl χ w X Q i + 1 k T w
203 195 197 mulcld χ w X Q i + 1 k T k T
204 202 203 addcld χ w X Q i + 1 k T w + k T
205 204 203 negsubd χ w X Q i + 1 k T w + k T + k T = w + k T - k T
206 202 203 pncand χ w X Q i + 1 k T w + k T - k T = w
207 199 205 206 3eqtrrd χ w X Q i + 1 k T w = w + k T + k T
208 157 adantr χ w X Q i + 1 k T φ
209 156 simpld χ φ i 0 ..^ M
210 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
211 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
212 11 210 211 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
213 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
214 212 213 sylibr φ i 0 ..^ M Q i Q i + 1 dom F
215 8 163 syl φ dom F = D
216 215 adantr φ i 0 ..^ M dom F = D
217 214 216 sseqtrd φ i 0 ..^ M Q i Q i + 1 D
218 209 217 syl χ Q i Q i + 1 D
219 218 adantr χ w X Q i + 1 k T Q i Q i + 1 D
220 elfzofz i 0 ..^ M i 0 M
221 220 adantl φ i 0 ..^ M i 0 M
222 179 221 ffvelrnd φ i 0 ..^ M Q i
223 157 178 222 syl2anc χ Q i
224 223 rexrd χ Q i *
225 224 adantr χ w X Q i + 1 k T Q i *
226 183 rexrd χ Q i + 1 *
227 226 adantr χ w X Q i + 1 k T Q i + 1 *
228 200 adantl χ w X Q i + 1 k T w
229 194 zred χ w X Q i + 1 k T k
230 208 26 syl χ w X Q i + 1 k T T
231 229 230 remulcld χ w X Q i + 1 k T k T
232 228 231 readdcld χ w X Q i + 1 k T w + k T
233 223 adantr χ w X Q i + 1 k T Q i
234 157 13 syl χ X
235 234 187 readdcld χ X + k T
236 235 adantr χ w X Q i + 1 k T X + k T
237 16 simprbi χ y = X + k T
238 237 eqcomd χ X + k T = y
239 156 simprd χ y Q i Q i + 1
240 238 239 eqeltrd χ X + k T Q i Q i + 1
241 icogelb Q i * Q i + 1 * X + k T Q i Q i + 1 Q i X + k T
242 224 226 240 241 syl3anc χ Q i X + k T
243 242 adantr χ w X Q i + 1 k T Q i X + k T
244 208 13 syl χ w X Q i + 1 k T X
245 244 rexrd χ w X Q i + 1 k T X *
246 183 adantr χ w X Q i + 1 k T Q i + 1
247 246 231 resubcld χ w X Q i + 1 k T Q i + 1 k T
248 247 rexrd χ w X Q i + 1 k T Q i + 1 k T *
249 simpr χ w X Q i + 1 k T w X Q i + 1 k T
250 ioogtlb X * Q i + 1 k T * w X Q i + 1 k T X < w
251 245 248 249 250 syl3anc χ w X Q i + 1 k T X < w
252 244 228 231 251 ltadd1dd χ w X Q i + 1 k T X + k T < w + k T
253 233 236 232 243 252 lelttrd χ w X Q i + 1 k T Q i < w + k T
254 iooltub X * Q i + 1 k T * w X Q i + 1 k T w < Q i + 1 k T
255 245 248 249 254 syl3anc χ w X Q i + 1 k T w < Q i + 1 k T
256 228 247 231 255 ltadd1dd χ w X Q i + 1 k T w + k T < Q i + 1 - k T + k T
257 183 recnd χ Q i + 1
258 187 recnd χ k T
259 257 258 npcand χ Q i + 1 - k T + k T = Q i + 1
260 259 adantr χ w X Q i + 1 k T Q i + 1 - k T + k T = Q i + 1
261 256 260 breqtrd χ w X Q i + 1 k T w + k T < Q i + 1
262 225 227 232 253 261 eliood χ w X Q i + 1 k T w + k T Q i Q i + 1
263 219 262 sseldd χ w X Q i + 1 k T w + k T D
264 194 znegcld χ w X Q i + 1 k T k
265 ovex w + k T V
266 eleq1 x = w + k T x D w + k T D
267 266 3anbi2d x = w + k T φ x D k φ w + k T D k
268 oveq1 x = w + k T x + k T = w + k T + k T
269 268 eleq1d x = w + k T x + k T D w + k T + k T D
270 267 269 imbi12d x = w + k T φ x D k x + k T D φ w + k T D k w + k T + k T D
271 negex k V
272 eleq1 j = k j k
273 272 3anbi3d j = k φ x D j φ x D k
274 oveq1 j = k j T = k T
275 274 oveq2d j = k x + j T = x + k T
276 275 eleq1d j = k x + j T D x + k T D
277 273 276 imbi12d j = k φ x D j x + j T D φ x D k x + k T D
278 eleq1 k = j k j
279 278 3anbi3d k = j φ x D k φ x D j
280 oveq1 k = j k T = j T
281 280 oveq2d k = j x + k T = x + j T
282 281 eleq1d k = j x + k T D x + j T D
283 279 282 imbi12d k = j φ x D k x + k T D φ x D j x + j T D
284 283 9 chvarvv φ x D j x + j T D
285 271 277 284 vtocl φ x D k x + k T D
286 265 270 285 vtocl φ w + k T D k w + k T + k T D
287 208 263 264 286 syl3anc χ w X Q i + 1 k T w + k T + k T D
288 207 287 eqeltrd χ w X Q i + 1 k T w D
289 288 ralrimiva χ w X Q i + 1 k T w D
290 dfss3 X Q i + 1 k T D w X Q i + 1 k T w D
291 289 290 sylibr χ X Q i + 1 k T D
292 193 291 ssind χ X Q i + 1 k T X +∞ D
293 ioosscn X +∞
294 ssinss1 X +∞ X +∞ D
295 293 294 mp1i χ X +∞ D
296 eqid TopOpen fld = TopOpen fld
297 eqid TopOpen fld 𝑡 X +∞ D X = TopOpen fld 𝑡 X +∞ D X
298 234 rexrd χ X *
299 234 leidd χ X X
300 237 oveq1d χ y k T = X + k T - k T
301 234 recnd χ X
302 301 258 pncand χ X + k T - k T = X
303 300 302 eqtr2d χ X = y k T
304 icossre Q i Q i + 1 * Q i Q i + 1
305 223 226 304 syl2anc χ Q i Q i + 1
306 305 239 sseldd χ y
307 icoltub Q i * Q i + 1 * y Q i Q i + 1 y < Q i + 1
308 224 226 239 307 syl3anc χ y < Q i + 1
309 306 183 187 308 ltsub1dd χ y k T < Q i + 1 k T
310 303 309 eqbrtrd χ X < Q i + 1 k T
311 298 189 298 299 310 elicod χ X X Q i + 1 k T
312 snunioo1 X * Q i + 1 k T * X < Q i + 1 k T X Q i + 1 k T X = X Q i + 1 k T
313 298 189 310 312 syl3anc χ X Q i + 1 k T X = X Q i + 1 k T
314 313 fveq2d χ int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X = int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T
315 296 cnfldtop TopOpen fld Top
316 ovex X +∞ V
317 316 inex1 X +∞ D V
318 snex X V
319 317 318 unex X +∞ D X V
320 resttop TopOpen fld Top X +∞ D X V TopOpen fld 𝑡 X +∞ D X Top
321 315 319 320 mp2an TopOpen fld 𝑡 X +∞ D X Top
322 321 a1i χ TopOpen fld 𝑡 X +∞ D X Top
323 retop topGen ran . Top
324 323 a1i χ topGen ran . Top
325 319 a1i χ X +∞ D X V
326 iooretop −∞ Q i + 1 k T topGen ran .
327 326 a1i χ −∞ Q i + 1 k T topGen ran .
328 elrestr topGen ran . Top X +∞ D X V −∞ Q i + 1 k T topGen ran . −∞ Q i + 1 k T X +∞ D X topGen ran . 𝑡 X +∞ D X
329 324 325 327 328 syl3anc χ −∞ Q i + 1 k T X +∞ D X topGen ran . 𝑡 X +∞ D X
330 mnfxr −∞ *
331 330 a1i χ x X Q i + 1 k T −∞ *
332 189 adantr χ x X Q i + 1 k T Q i + 1 k T *
333 icossre X Q i + 1 k T * X Q i + 1 k T
334 234 189 333 syl2anc χ X Q i + 1 k T
335 334 sselda χ x X Q i + 1 k T x
336 335 mnfltd χ x X Q i + 1 k T −∞ < x
337 298 adantr χ x X Q i + 1 k T X *
338 simpr χ x X Q i + 1 k T x X Q i + 1 k T
339 icoltub X * Q i + 1 k T * x X Q i + 1 k T x < Q i + 1 k T
340 337 332 338 339 syl3anc χ x X Q i + 1 k T x < Q i + 1 k T
341 331 332 335 336 340 eliood χ x X Q i + 1 k T x −∞ Q i + 1 k T
342 vsnid x x
343 342 a1i x = X x x
344 sneq x = X x = X
345 343 344 eleqtrd x = X x X
346 elun2 x X x X +∞ D X
347 345 346 syl x = X x X +∞ D X
348 347 adantl χ x X Q i + 1 k T x = X x X +∞ D X
349 298 ad2antrr χ x X Q i + 1 k T ¬ x = X X *
350 176 a1i χ x X Q i + 1 k T ¬ x = X +∞ *
351 335 adantr χ x X Q i + 1 k T ¬ x = X x
352 234 ad2antrr χ x X Q i + 1 k T ¬ x = X X
353 icogelb X * Q i + 1 k T * x X Q i + 1 k T X x
354 337 332 338 353 syl3anc χ x X Q i + 1 k T X x
355 354 adantr χ x X Q i + 1 k T ¬ x = X X x
356 neqne ¬ x = X x X
357 356 adantl χ x X Q i + 1 k T ¬ x = X x X
358 352 351 355 357 leneltd χ x X Q i + 1 k T ¬ x = X X < x
359 351 ltpnfd χ x X Q i + 1 k T ¬ x = X x < +∞
360 349 350 351 358 359 eliood χ x X Q i + 1 k T ¬ x = X x X +∞
361 184 zcnd χ k
362 361 196 mulneg1d χ k T = k T
363 362 oveq2d χ w + k T + k T = w + k T + k T
364 363 adantr χ w X Q i + 1 k T w + k T + k T = w + k T + k T
365 ioosscn X Q i + 1 k T
366 365 sseli w X Q i + 1 k T w
367 366 adantl χ w X Q i + 1 k T w
368 258 adantr χ w X Q i + 1 k T k T
369 367 368 addcld χ w X Q i + 1 k T w + k T
370 369 368 negsubd χ w X Q i + 1 k T w + k T + k T = w + k T - k T
371 367 368 pncand χ w X Q i + 1 k T w + k T - k T = w
372 364 370 371 3eqtrrd χ w X Q i + 1 k T w = w + k T + k T
373 187 adantr χ w X Q i + 1 k T k T
374 228 373 readdcld χ w X Q i + 1 k T w + k T
375 225 227 374 253 261 eliood χ w X Q i + 1 k T w + k T Q i Q i + 1
376 219 375 sseldd χ w X Q i + 1 k T w + k T D
377 272 3anbi3d j = k φ w + k T D j φ w + k T D k
378 274 oveq2d j = k w + k T + j T = w + k T + k T
379 378 eleq1d j = k w + k T + j T D w + k T + k T D
380 377 379 imbi12d j = k φ w + k T D j w + k T + j T D φ w + k T D k w + k T + k T D
381 266 3anbi2d x = w + k T φ x D j φ w + k T D j
382 oveq1 x = w + k T x + j T = w + k T + j T
383 382 eleq1d x = w + k T x + j T D w + k T + j T D
384 381 383 imbi12d x = w + k T φ x D j x + j T D φ w + k T D j w + k T + j T D
385 265 384 284 vtocl φ w + k T D j w + k T + j T D
386 271 380 385 vtocl φ w + k T D k w + k T + k T D
387 208 376 264 386 syl3anc χ w X Q i + 1 k T w + k T + k T D
388 372 387 eqeltrd χ w X Q i + 1 k T w D
389 388 ralrimiva χ w X Q i + 1 k T w D
390 389 290 sylibr χ X Q i + 1 k T D
391 390 ad2antrr χ x X Q i + 1 k T ¬ x = X X Q i + 1 k T D
392 189 ad2antrr χ x X Q i + 1 k T ¬ x = X Q i + 1 k T *
393 340 adantr χ x X Q i + 1 k T ¬ x = X x < Q i + 1 k T
394 349 392 351 358 393 eliood χ x X Q i + 1 k T ¬ x = X x X Q i + 1 k T
395 391 394 sseldd χ x X Q i + 1 k T ¬ x = X x D
396 360 395 elind χ x X Q i + 1 k T ¬ x = X x X +∞ D
397 elun1 x X +∞ D x X +∞ D X
398 396 397 syl χ x X Q i + 1 k T ¬ x = X x X +∞ D X
399 348 398 pm2.61dan χ x X Q i + 1 k T x X +∞ D X
400 341 399 elind χ x X Q i + 1 k T x −∞ Q i + 1 k T X +∞ D X
401 298 adantr χ x −∞ Q i + 1 k T X +∞ D X X *
402 189 adantr χ x −∞ Q i + 1 k T X +∞ D X Q i + 1 k T *
403 elinel1 x −∞ Q i + 1 k T X +∞ D X x −∞ Q i + 1 k T
404 elioore x −∞ Q i + 1 k T x
405 403 404 syl x −∞ Q i + 1 k T X +∞ D X x
406 405 rexrd x −∞ Q i + 1 k T X +∞ D X x *
407 406 adantl χ x −∞ Q i + 1 k T X +∞ D X x *
408 elinel2 x −∞ Q i + 1 k T X +∞ D X x X +∞ D X
409 234 adantr χ x = X X
410 92 eqcomd x = X X = x
411 410 adantl χ x = X X = x
412 409 411 eqled χ x = X X x
413 412 adantlr χ x X +∞ D X x = X X x
414 simpll χ x X +∞ D X ¬ x = X χ
415 simplr χ x X +∞ D X ¬ x = X x X +∞ D X
416 id ¬ x = X ¬ x = X
417 velsn x X x = X
418 416 417 sylnibr ¬ x = X ¬ x X
419 418 adantl χ x X +∞ D X ¬ x = X ¬ x X
420 elunnel2 x X +∞ D X ¬ x X x X +∞ D
421 415 419 420 syl2anc χ x X +∞ D X ¬ x = X x X +∞ D
422 elinel1 x X +∞ D x X +∞
423 421 422 syl χ x X +∞ D X ¬ x = X x X +∞
424 234 adantr χ x X +∞ X
425 elioore x X +∞ x
426 425 adantl χ x X +∞ x
427 298 adantr χ x X +∞ X *
428 176 a1i χ x X +∞ +∞ *
429 simpr χ x X +∞ x X +∞
430 ioogtlb X * +∞ * x X +∞ X < x
431 427 428 429 430 syl3anc χ x X +∞ X < x
432 424 426 431 ltled χ x X +∞ X x
433 414 423 432 syl2anc χ x X +∞ D X ¬ x = X X x
434 413 433 pm2.61dan χ x X +∞ D X X x
435 408 434 sylan2 χ x −∞ Q i + 1 k T X +∞ D X X x
436 330 a1i χ x −∞ Q i + 1 k T −∞ *
437 189 adantr χ x −∞ Q i + 1 k T Q i + 1 k T *
438 simpr χ x −∞ Q i + 1 k T x −∞ Q i + 1 k T
439 iooltub −∞ * Q i + 1 k T * x −∞ Q i + 1 k T x < Q i + 1 k T
440 436 437 438 439 syl3anc χ x −∞ Q i + 1 k T x < Q i + 1 k T
441 403 440 sylan2 χ x −∞ Q i + 1 k T X +∞ D X x < Q i + 1 k T
442 401 402 407 435 441 elicod χ x −∞ Q i + 1 k T X +∞ D X x X Q i + 1 k T
443 400 442 impbida χ x X Q i + 1 k T x −∞ Q i + 1 k T X +∞ D X
444 443 eqrdv χ X Q i + 1 k T = −∞ Q i + 1 k T X +∞ D X
445 ioossre X +∞
446 ssinss1 X +∞ X +∞ D
447 445 446 mp1i χ X +∞ D
448 234 snssd χ X
449 447 448 unssd χ X +∞ D X
450 eqid topGen ran . = topGen ran .
451 296 450 rerest X +∞ D X TopOpen fld 𝑡 X +∞ D X = topGen ran . 𝑡 X +∞ D X
452 449 451 syl χ TopOpen fld 𝑡 X +∞ D X = topGen ran . 𝑡 X +∞ D X
453 329 444 452 3eltr4d χ X Q i + 1 k T TopOpen fld 𝑡 X +∞ D X
454 isopn3i TopOpen fld 𝑡 X +∞ D X Top X Q i + 1 k T TopOpen fld 𝑡 X +∞ D X int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T = X Q i + 1 k T
455 322 453 454 syl2anc χ int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T = X Q i + 1 k T
456 314 455 eqtr2d χ X Q i + 1 k T = int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X
457 311 456 eleqtrd χ X int TopOpen fld 𝑡 X +∞ D X X Q i + 1 k T X
458 175 292 295 296 297 457 limcres χ F X +∞ D X Q i + 1 k T lim X = F X +∞ D lim X
459 292 resabs1d χ F X +∞ D X Q i + 1 k T = F X Q i + 1 k T
460 459 oveq1d χ F X +∞ D X Q i + 1 k T lim X = F X Q i + 1 k T lim X
461 170 a1i φ
462 8 461 fssd φ F : D
463 215 feq2d φ F : dom F F : D
464 462 463 mpbird φ F : dom F
465 157 464 syl χ F : dom F
466 465 adantr χ w F X Q i + 1 k T lim X F : dom F
467 365 a1i χ w F X Q i + 1 k T lim X X Q i + 1 k T
468 390 164 sseqtrrd χ X Q i + 1 k T dom F
469 468 adantr χ w F X Q i + 1 k T lim X X Q i + 1 k T dom F
470 258 adantr χ w F X Q i + 1 k T lim X k T
471 eqid z | x X Q i + 1 k T z = x + k T = z | x X Q i + 1 k T z = x + k T
472 eqeq1 z = w z = x + k T w = x + k T
473 472 rexbidv z = w x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
474 473 elrab w z | x X Q i + 1 k T z = x + k T w x X Q i + 1 k T w = x + k T
475 474 simprbi w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
476 475 adantl χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T
477 nfv x χ
478 nfre1 x x X Q i + 1 k T z = x + k T
479 nfcv _ x
480 478 479 nfrabw _ x z | x X Q i + 1 k T z = x + k T
481 480 nfcri x w z | x X Q i + 1 k T z = x + k T
482 477 481 nfan x χ w z | x X Q i + 1 k T z = x + k T
483 nfv x w D
484 simp3 χ x X Q i + 1 k T w = x + k T w = x + k T
485 eleq1 w = x w X Q i + 1 k T x X Q i + 1 k T
486 485 anbi2d w = x χ w X Q i + 1 k T χ x X Q i + 1 k T
487 oveq1 w = x w + k T = x + k T
488 487 eleq1d w = x w + k T D x + k T D
489 486 488 imbi12d w = x χ w X Q i + 1 k T w + k T D χ x X Q i + 1 k T x + k T D
490 489 263 chvarvv χ x X Q i + 1 k T x + k T D
491 490 3adant3 χ x X Q i + 1 k T w = x + k T x + k T D
492 484 491 eqeltrd χ x X Q i + 1 k T w = x + k T w D
493 492 3exp χ x X Q i + 1 k T w = x + k T w D
494 493 adantr χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T w D
495 482 483 494 rexlimd χ w z | x X Q i + 1 k T z = x + k T x X Q i + 1 k T w = x + k T w D
496 476 495 mpd χ w z | x X Q i + 1 k T z = x + k T w D
497 496 ralrimiva χ w z | x X Q i + 1 k T z = x + k T w D
498 dfss3 z | x X Q i + 1 k T z = x + k T D w z | x X Q i + 1 k T z = x + k T w D
499 497 498 sylibr χ z | x X Q i + 1 k T z = x + k T D
500 499 164 sseqtrrd χ z | x X Q i + 1 k T z = x + k T dom F
501 500 adantr χ w F X Q i + 1 k T lim X z | x X Q i + 1 k T z = x + k T dom F
502 157 adantr χ x X Q i + 1 k T φ
503 390 sselda χ x X Q i + 1 k T x D
504 184 adantr χ x X Q i + 1 k T k
505 502 503 504 10 syl3anc χ x X Q i + 1 k T F x + k T = F x
506 505 adantlr χ w F X Q i + 1 k T lim X x X Q i + 1 k T F x + k T = F x
507 simpr χ w F X Q i + 1 k T lim X w F X Q i + 1 k T lim X
508 466 467 469 470 471 501 506 507 limcperiod χ w F X Q i + 1 k T lim X w F z | x X Q i + 1 k T z = x + k T lim X + k T
509 259 eqcomd χ Q i + 1 = Q i + 1 - k T + k T
510 237 509 oveq12d χ y Q i + 1 = X + k T Q i + 1 - k T + k T
511 234 188 187 iooshift χ X + k T Q i + 1 - k T + k T = z | x X Q i + 1 k T z = x + k T
512 510 511 eqtr2d χ z | x X Q i + 1 k T z = x + k T = y Q i + 1
513 512 reseq2d χ F z | x X Q i + 1 k T z = x + k T = F y Q i + 1
514 513 238 oveq12d χ F z | x X Q i + 1 k T z = x + k T lim X + k T = F y Q i + 1 lim y
515 514 adantr χ w F X Q i + 1 k T lim X F z | x X Q i + 1 k T z = x + k T lim X + k T = F y Q i + 1 lim y
516 508 515 eleqtrd χ w F X Q i + 1 k T lim X w F y Q i + 1 lim y
517 465 adantr χ w F y Q i + 1 lim y F : dom F
518 ioosscn y Q i + 1
519 518 a1i χ w F y Q i + 1 lim y y Q i + 1
520 icogelb Q i * Q i + 1 * y Q i Q i + 1 Q i y
521 224 226 239 520 syl3anc χ Q i y
522 iooss1 Q i * Q i y y Q i + 1 Q i Q i + 1
523 224 521 522 syl2anc χ y Q i + 1 Q i Q i + 1
524 523 218 sstrd χ y Q i + 1 D
525 524 164 sseqtrrd χ y Q i + 1 dom F
526 525 adantr χ w F y Q i + 1 lim y y Q i + 1 dom F
527 361 negcld χ k
528 527 196 mulcld χ k T
529 528 adantr χ w F y Q i + 1 lim y k T
530 eqid z | x y Q i + 1 z = x + k T = z | x y Q i + 1 z = x + k T
531 eqeq1 z = w z = x + k T w = x + k T
532 531 rexbidv z = w x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
533 532 elrab w z | x y Q i + 1 z = x + k T w x y Q i + 1 w = x + k T
534 533 simprbi w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
535 534 adantl χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T
536 nfre1 x x y Q i + 1 z = x + k T
537 536 479 nfrabw _ x z | x y Q i + 1 z = x + k T
538 537 nfcri x w z | x y Q i + 1 z = x + k T
539 477 538 nfan x χ w z | x y Q i + 1 z = x + k T
540 simp3 χ x y Q i + 1 w = x + k T w = x + k T
541 157 adantr χ x y Q i + 1 φ
542 524 sselda χ x y Q i + 1 x D
543 184 adantr χ x y Q i + 1 k
544 543 znegcld χ x y Q i + 1 k
545 541 542 544 285 syl3anc χ x y Q i + 1 x + k T D
546 545 3adant3 χ x y Q i + 1 w = x + k T x + k T D
547 540 546 eqeltrd χ x y Q i + 1 w = x + k T w D
548 547 3exp χ x y Q i + 1 w = x + k T w D
549 548 adantr χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T w D
550 539 483 549 rexlimd χ w z | x y Q i + 1 z = x + k T x y Q i + 1 w = x + k T w D
551 535 550 mpd χ w z | x y Q i + 1 z = x + k T w D
552 551 ralrimiva χ w z | x y Q i + 1 z = x + k T w D
553 dfss3 z | x y Q i + 1 z = x + k T D w z | x y Q i + 1 z = x + k T w D
554 552 553 sylibr χ z | x y Q i + 1 z = x + k T D
555 554 164 sseqtrrd χ z | x y Q i + 1 z = x + k T dom F
556 555 adantr χ w F y Q i + 1 lim y z | x y Q i + 1 z = x + k T dom F
557 157 ad2antrr χ w F y Q i + 1 lim y x y Q i + 1 φ
558 542 adantlr χ w F y Q i + 1 lim y x y Q i + 1 x D
559 544 adantlr χ w F y Q i + 1 lim y x y Q i + 1 k
560 275 fveq2d j = k F x + j T = F x + k T
561 560 eqeq1d j = k F x + j T = F x F x + k T = F x
562 273 561 imbi12d j = k φ x D j F x + j T = F x φ x D k F x + k T = F x
563 281 fveq2d k = j F x + k T = F x + j T
564 563 eqeq1d k = j F x + k T = F x F x + j T = F x
565 279 564 imbi12d k = j φ x D k F x + k T = F x φ x D j F x + j T = F x
566 565 10 chvarvv φ x D j F x + j T = F x
567 271 562 566 vtocl φ x D k F x + k T = F x
568 557 558 559 567 syl3anc χ w F y Q i + 1 lim y x y Q i + 1 F x + k T = F x
569 simpr χ w F y Q i + 1 lim y w F y Q i + 1 lim y
570 517 519 526 529 530 556 568 569 limcperiod χ w F y Q i + 1 lim y w F z | x y Q i + 1 z = x + k T lim y + k T
571 362 oveq2d χ y + k T = y + k T
572 306 recnd χ y
573 572 258 negsubd χ y + k T = y k T
574 303 eqcomd χ y k T = X
575 571 573 574 3eqtrd χ y + k T = X
576 575 eqcomd χ X = y + k T
577 362 oveq2d χ Q i + 1 + k T = Q i + 1 + k T
578 257 258 negsubd χ Q i + 1 + k T = Q i + 1 k T
579 577 578 eqtr2d χ Q i + 1 k T = Q i + 1 + k T
580 576 579 oveq12d χ X Q i + 1 k T = y + k T Q i + 1 + k T
581 185 renegcld χ k
582 581 186 remulcld χ k T
583 306 183 582 iooshift χ y + k T Q i + 1 + k T = z | x y Q i + 1 z = x + k T
584 580 583 eqtr2d χ z | x y Q i + 1 z = x + k T = X Q i + 1 k T
585 584 adantr χ w F y Q i + 1 lim y z | x y Q i + 1 z = x + k T = X Q i + 1 k T
586 585 reseq2d χ w F y Q i + 1 lim y F z | x y Q i + 1 z = x + k T = F X Q i + 1 k T
587 575 adantr χ w F y Q i + 1 lim y y + k T = X
588 586 587 oveq12d χ w F y Q i + 1 lim y F z | x y Q i + 1 z = x + k T lim y + k T = F X Q i + 1 k T lim X
589 570 588 eleqtrd χ w F y Q i + 1 lim y w F X Q i + 1 k T lim X
590 516 589 impbida χ w F X Q i + 1 k T lim X w F y Q i + 1 lim y
591 590 eqrdv χ F X Q i + 1 k T lim X = F y Q i + 1 lim y
592 460 591 eqtrd χ F X +∞ D X Q i + 1 k T lim X = F y Q i + 1 lim y
593 168 458 592 3eqtr2d χ F X +∞ lim X = F y Q i + 1 lim y
594 157 178 78 syl2anc χ Q i < Q i + 1
595 157 178 11 syl2anc χ F Q i Q i + 1 : Q i Q i + 1 cn
596 157 178 12 syl2anc χ R F Q i Q i + 1 lim Q i
597 eqid if y = Q i R F Q i Q i + 1 y = if y = Q i R F Q i Q i + 1 y
598 eqid TopOpen fld 𝑡 Q i Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1
599 223 183 594 595 596 306 183 308 523 597 598 fourierdlem32 χ if y = Q i R F Q i Q i + 1 y F Q i Q i + 1 y Q i + 1 lim y
600 523 resabs1d χ F Q i Q i + 1 y Q i + 1 = F y Q i + 1
601 600 oveq1d χ F Q i Q i + 1 y Q i + 1 lim y = F y Q i + 1 lim y
602 599 601 eleqtrd χ if y = Q i R F Q i Q i + 1 y F y Q i + 1 lim y
603 ne0i if y = Q i R F Q i Q i + 1 y F y Q i + 1 lim y F y Q i + 1 lim y
604 602 603 syl χ F y Q i + 1 lim y
605 593 604 eqnetrd χ F X +∞ lim X
606 16 605 sylbir φ i 0 ..^ M y Q i Q i + 1 k y = X + k T F X +∞ lim X
607 152 153 154 606 syl21anc φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
608 607 3exp φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
609 608 adantr φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
610 143 148 609 rexlim2d φ i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
611 140 610 mpd φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X
612 133 139 611 vtocl φ i 0 ..^ M k E X T Q i Q i + 1 E X T = X + k T F X +∞ lim X
613 17 132 612 syl2anc φ E X = B F X +∞ lim X
614 iocssre A * B A B
615 63 2 614 syl2anc φ A B
616 ovex B x T T V
617 14 fvmpt2 x B x T T V Z x = B x T T
618 616 617 mpan2 x Z x = B x T T
619 618 oveq2d x x + Z x = x + B x T T
620 619 mpteq2ia x x + Z x = x x + B x T T
621 15 620 eqtri E = x x + B x T T
622 1 2 3 5 621 fourierdlem4 φ E : A B
623 622 13 ffvelrnd φ E X A B
624 615 623 sseldd φ E X
625 624 adantr φ E X B E X
626 simpl φ E X B φ
627 simpr φ E X A B E X ran Q E X ran Q
628 ffn Q : 0 M Q Fn 0 M
629 48 628 syl φ Q Fn 0 M
630 629 ad2antrr φ E X A B E X ran Q Q Fn 0 M
631 fvelrnb Q Fn 0 M E X ran Q j 0 M Q j = E X
632 630 631 syl φ E X A B E X ran Q E X ran Q j 0 M Q j = E X
633 627 632 mpbid φ E X A B E X ran Q j 0 M Q j = E X
634 1zzd φ E X A B j 0 M Q j = E X 1
635 elfzelz j 0 M j
636 635 ad2antlr φ E X A B j 0 M Q j = E X j
637 636 zred φ E X A B j 0 M Q j = E X j
638 elfzle1 j 0 M 0 j
639 638 ad2antlr φ E X A B j 0 M Q j = E X 0 j
640 id Q j = E X Q j = E X
641 640 eqcomd Q j = E X E X = Q j
642 641 ad2antlr φ Q j = E X j = 0 E X = Q j
643 fveq2 j = 0 Q j = Q 0
644 643 adantl φ Q j = E X j = 0 Q j = Q 0
645 45 simprld φ Q 0 = A Q M = B
646 645 simpld φ Q 0 = A
647 646 ad2antrr φ Q j = E X j = 0 Q 0 = A
648 642 644 647 3eqtrd φ Q j = E X j = 0 E X = A
649 648 adantllr φ E X A B Q j = E X j = 0 E X = A
650 649 adantllr φ E X A B j 0 M Q j = E X j = 0 E X = A
651 1 adantr φ E X A B A
652 63 adantr φ E X A B A *
653 2 rexrd φ B *
654 653 adantr φ E X A B B *
655 simpr φ E X A B E X A B
656 iocgtlb A * B * E X A B A < E X
657 652 654 655 656 syl3anc φ E X A B A < E X
658 651 657 gtned φ E X A B E X A
659 658 neneqd φ E X A B ¬ E X = A
660 659 ad3antrrr φ E X A B j 0 M Q j = E X j = 0 ¬ E X = A
661 650 660 pm2.65da φ E X A B j 0 M Q j = E X ¬ j = 0
662 661 neqned φ E X A B j 0 M Q j = E X j 0
663 637 639 662 ne0gt0d φ E X A B j 0 M Q j = E X 0 < j
664 0zd φ E X A B j 0 M Q j = E X 0
665 zltp1le 0 j 0 < j 0 + 1 j
666 664 636 665 syl2anc φ E X A B j 0 M Q j = E X 0 < j 0 + 1 j
667 663 666 mpbid φ E X A B j 0 M Q j = E X 0 + 1 j
668 82 667 eqbrtrid φ E X A B j 0 M Q j = E X 1 j
669 eluz2 j 1 1 j 1 j
670 634 636 668 669 syl3anbrc φ E X A B j 0 M Q j = E X j 1
671 nnuz = 1
672 670 671 eleqtrrdi φ E X A B j 0 M Q j = E X j
673 nnm1nn0 j j 1 0
674 672 673 syl φ E X A B j 0 M Q j = E X j 1 0
675 674 50 eleqtrdi φ E X A B j 0 M Q j = E X j 1 0
676 19 ad3antrrr φ E X A B j 0 M Q j = E X M
677 peano2zm j j 1
678 635 677 syl j 0 M j 1
679 678 zred j 0 M j 1
680 635 zred j 0 M j
681 elfzel2 j 0 M M
682 681 zred j 0 M M
683 680 ltm1d j 0 M j 1 < j
684 elfzle2 j 0 M j M
685 679 680 682 683 684 ltletrd j 0 M j 1 < M
686 685 ad2antlr φ E X A B j 0 M Q j = E X j 1 < M
687 elfzo2 j 1 0 ..^ M j 1 0 M j 1 < M
688 675 676 686 687 syl3anbrc φ E X A B j 0 M Q j = E X j 1 0 ..^ M
689 48 ad3antrrr φ E X A B j 0 M Q j = E X Q : 0 M
690 636 677 syl φ E X A B j 0 M Q j = E X j 1
691 674 nn0ge0d φ E X A B j 0 M Q j = E X 0 j 1
692 679 682 685 ltled j 0 M j 1 M
693 692 ad2antlr φ E X A B j 0 M Q j = E X j 1 M
694 664 676 690 691 693 elfzd φ E X A B j 0 M Q j = E X j 1 0 M
695 689 694 ffvelrnd φ E X A B j 0 M Q j = E X Q j 1
696 695 rexrd φ E X A B j 0 M Q j = E X Q j 1 *
697 48 ffvelrnda φ j 0 M Q j
698 697 rexrd φ j 0 M Q j *
699 698 adantlr φ E X A B j 0 M Q j *
700 699 adantr φ E X A B j 0 M Q j = E X Q j *
701 615 sselda φ E X A B E X
702 701 rexrd φ E X A B E X *
703 702 ad2antrr φ E X A B j 0 M Q j = E X E X *
704 simplll φ E X A B j 0 M Q j = E X φ
705 ovex j 1 V
706 eleq1 i = j 1 i 0 ..^ M j 1 0 ..^ M
707 706 anbi2d i = j 1 φ i 0 ..^ M φ j 1 0 ..^ M
708 fveq2 i = j 1 Q i = Q j 1
709 oveq1 i = j 1 i + 1 = j - 1 + 1
710 709 fveq2d i = j 1 Q i + 1 = Q j - 1 + 1
711 708 710 breq12d i = j 1 Q i < Q i + 1 Q j 1 < Q j - 1 + 1
712 707 711 imbi12d i = j 1 φ i 0 ..^ M Q i < Q i + 1 φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
713 705 712 78 vtocl φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
714 704 688 713 syl2anc φ E X A B j 0 M Q j = E X Q j 1 < Q j - 1 + 1
715 635 zcnd j 0 M j
716 1cnd j 0 M 1
717 715 716 npcand j 0 M j - 1 + 1 = j
718 717 eqcomd j 0 M j = j - 1 + 1
719 718 fveq2d j 0 M Q j = Q j - 1 + 1
720 719 eqcomd j 0 M Q j - 1 + 1 = Q j
721 720 ad2antlr φ E X A B j 0 M Q j = E X Q j - 1 + 1 = Q j
722 714 721 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < Q j
723 simpr φ E X A B j 0 M Q j = E X Q j = E X
724 722 723 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < E X
725 624 leidd φ E X E X
726 725 ad2antrr φ j 0 M Q j = E X E X E X
727 641 adantl φ j 0 M Q j = E X E X = Q j
728 726 727 breqtrd φ j 0 M Q j = E X E X Q j
729 728 adantllr φ E X A B j 0 M Q j = E X E X Q j
730 696 700 703 724 729 eliocd φ E X A B j 0 M Q j = E X E X Q j 1 Q j
731 719 oveq2d j 0 M Q j 1 Q j = Q j 1 Q j - 1 + 1
732 731 ad2antlr φ E X A B j 0 M Q j = E X Q j 1 Q j = Q j 1 Q j - 1 + 1
733 730 732 eleqtrd φ E X A B j 0 M Q j = E X E X Q j 1 Q j - 1 + 1
734 708 710 oveq12d i = j 1 Q i Q i + 1 = Q j 1 Q j - 1 + 1
735 734 eleq2d i = j 1 E X Q i Q i + 1 E X Q j 1 Q j - 1 + 1
736 735 rspcev j 1 0 ..^ M E X Q j 1 Q j - 1 + 1 i 0 ..^ M E X Q i Q i + 1
737 688 733 736 syl2anc φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
738 737 ex φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
739 738 adantlr φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
740 739 rexlimdva φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
741 633 740 mpd φ E X A B E X ran Q i 0 ..^ M E X Q i Q i + 1
742 6 ad2antrr φ E X A B ¬ E X ran Q M
743 48 ad2antrr φ E X A B ¬ E X ran Q Q : 0 M
744 iocssicc A B A B
745 646 eqcomd φ A = Q 0
746 645 simprd φ Q M = B
747 746 eqcomd φ B = Q M
748 745 747 oveq12d φ A B = Q 0 Q M
749 744 748 sseqtrid φ A B Q 0 Q M
750 749 sselda φ E X A B E X Q 0 Q M
751 750 adantr φ E X A B ¬ E X ran Q E X Q 0 Q M
752 simpr φ E X A B ¬ E X ran Q ¬ E X ran Q
753 fveq2 k = j Q k = Q j
754 753 breq1d k = j Q k < E X Q j < E X
755 754 cbvrabv k 0 ..^ M | Q k < E X = j 0 ..^ M | Q j < E X
756 755 supeq1i sup k 0 ..^ M | Q k < E X < = sup j 0 ..^ M | Q j < E X <
757 742 743 751 752 756 fourierdlem25 φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
758 ioossioc Q i Q i + 1 Q i Q i + 1
759 758 sseli E X Q i Q i + 1 E X Q i Q i + 1
760 759 a1i φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
761 760 reximdva φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M E X Q i Q i + 1
762 757 761 mpd φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
763 741 762 pm2.61dan φ E X A B i 0 ..^ M E X Q i Q i + 1
764 623 763 mpdan φ i 0 ..^ M E X Q i Q i + 1
765 fveq2 i = j Q i = Q j
766 oveq1 i = j i + 1 = j + 1
767 766 fveq2d i = j Q i + 1 = Q j + 1
768 765 767 oveq12d i = j Q i Q i + 1 = Q j Q j + 1
769 768 eleq2d i = j E X Q i Q i + 1 E X Q j Q j + 1
770 769 cbvrexvw i 0 ..^ M E X Q i Q i + 1 j 0 ..^ M E X Q j Q j + 1
771 764 770 sylib φ j 0 ..^ M E X Q j Q j + 1
772 771 adantr φ E X B j 0 ..^ M E X Q j Q j + 1
773 elfzonn0 j 0 ..^ M j 0
774 1nn0 1 0
775 774 a1i j 0 ..^ M 1 0
776 773 775 nn0addcld j 0 ..^ M j + 1 0
777 776 50 eleqtrdi j 0 ..^ M j + 1 0
778 777 adantr j 0 ..^ M E X = Q j + 1 j + 1 0
779 778 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 0
780 19 ad2antrr φ E X B E X = Q j + 1 M
781 780 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M
782 773 nn0red j 0 ..^ M j
783 782 adantr j 0 ..^ M E X = Q j + 1 j
784 783 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j
785 1red φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 1
786 784 785 readdcld φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1
787 781 zred φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M
788 elfzop1le2 j 0 ..^ M j + 1 M
789 788 adantr j 0 ..^ M E X = Q j + 1 j + 1 M
790 789 3ad2antl2 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 M
791 simplr φ E X = Q j + 1 M = j + 1 E X = Q j + 1
792 fveq2 M = j + 1 Q M = Q j + 1
793 792 eqcomd M = j + 1 Q j + 1 = Q M
794 793 adantl φ E X = Q j + 1 M = j + 1 Q j + 1 = Q M
795 746 ad2antrr φ E X = Q j + 1 M = j + 1 Q M = B
796 791 794 795 3eqtrd φ E X = Q j + 1 M = j + 1 E X = B
797 796 adantllr φ E X B E X = Q j + 1 M = j + 1 E X = B
798 simpllr φ E X B E X = Q j + 1 M = j + 1 E X B
799 798 neneqd φ E X B E X = Q j + 1 M = j + 1 ¬ E X = B
800 797 799 pm2.65da φ E X B E X = Q j + 1 ¬ M = j + 1
801 800 neqned φ E X B E X = Q j + 1 M j + 1
802 801 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 M j + 1
803 786 787 790 802 leneltd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 < M
804 elfzo2 j + 1 0 ..^ M j + 1 0 M j + 1 < M
805 779 781 803 804 syl3anbrc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 0 ..^ M
806 48 adantr φ j 0 ..^ M Q : 0 M
807 fzofzp1 j 0 ..^ M j + 1 0 M
808 807 adantl φ j 0 ..^ M j + 1 0 M
809 806 808 ffvelrnd φ j 0 ..^ M Q j + 1
810 809 rexrd φ j 0 ..^ M Q j + 1 *
811 810 adantlr φ E X B j 0 ..^ M Q j + 1 *
812 811 3adant3 φ E X B j 0 ..^ M E X Q j Q j + 1 Q j + 1 *
813 812 adantr φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 *
814 simpl1l φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 φ
815 814 48 syl φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q : 0 M
816 fzofzp1 j + 1 0 ..^ M j + 1 + 1 0 M
817 805 816 syl φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 j + 1 + 1 0 M
818 815 817 ffvelrnd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 + 1
819 818 rexrd φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 + 1 *
820 624 rexrd φ E X *
821 820 ad2antrr φ E X B E X = Q j + 1 E X *
822 821 3ad2antl1 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X *
823 809 leidd φ j 0 ..^ M Q j + 1 Q j + 1
824 823 adantr φ j 0 ..^ M E X = Q j + 1 Q j + 1 Q j + 1
825 id E X = Q j + 1 E X = Q j + 1
826 825 eqcomd E X = Q j + 1 Q j + 1 = E X
827 826 adantl φ j 0 ..^ M E X = Q j + 1 Q j + 1 = E X
828 824 827 breqtrd φ j 0 ..^ M E X = Q j + 1 Q j + 1 E X
829 828 adantllr φ E X B j 0 ..^ M E X = Q j + 1 Q j + 1 E X
830 829 3adantl3 φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 Q j + 1 E X
831 simpr φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X = Q j + 1
832 simpr φ j + 1 0 ..^ M E X = Q j + 1 E X = Q j + 1
833 ovex j + 1 V
834 eleq1 i = j + 1 i 0 ..^ M j + 1 0 ..^ M
835 834 anbi2d i = j + 1 φ i 0 ..^ M φ j + 1 0 ..^ M
836 fveq2 i = j + 1 Q i = Q j + 1
837 oveq1 i = j + 1 i + 1 = j + 1 + 1
838 837 fveq2d i = j + 1 Q i + 1 = Q j + 1 + 1
839 836 838 breq12d i = j + 1 Q i < Q i + 1 Q j + 1 < Q j + 1 + 1
840 835 839 imbi12d i = j + 1 φ i 0 ..^ M Q i < Q i + 1 φ j + 1 0 ..^ M Q j + 1 < Q j + 1 + 1
841 833 840 78 vtocl φ j + 1 0 ..^ M Q j + 1 < Q j + 1 + 1
842 841 adantr φ j + 1 0 ..^ M E X = Q j + 1 Q j + 1 < Q j + 1 + 1
843 832 842 eqbrtrd φ j + 1 0 ..^ M E X = Q j + 1 E X < Q j + 1 + 1
844 814 805 831 843 syl21anc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X < Q j + 1 + 1
845 813 819 822 830 844 elicod φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 E X Q j + 1 Q j + 1 + 1
846 836 838 oveq12d i = j + 1 Q i Q i + 1 = Q j + 1 Q j + 1 + 1
847 846 eleq2d i = j + 1 E X Q i Q i + 1 E X Q j + 1 Q j + 1 + 1
848 847 rspcev j + 1 0 ..^ M E X Q j + 1 Q j + 1 + 1 i 0 ..^ M E X Q i Q i + 1
849 805 845 848 syl2anc φ E X B j 0 ..^ M E X Q j Q j + 1 E X = Q j + 1 i 0 ..^ M E X Q i Q i + 1
850 simpl2 φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 j 0 ..^ M
851 id φ j 0 ..^ M E X Q j Q j + 1 φ j 0 ..^ M E X Q j Q j + 1
852 851 3adant1r φ E X B j 0 ..^ M E X Q j Q j + 1 φ j 0 ..^ M E X Q j Q j + 1
853 elfzofz j 0 ..^ M j 0 M
854 853 adantl φ j 0 ..^ M j 0 M
855 806 854 ffvelrnd φ j 0 ..^ M Q j
856 855 rexrd φ j 0 ..^ M Q j *
857 856 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j *
858 857 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j *
859 810 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j + 1 *
860 859 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1 *
861 820 adantr φ ¬ E X = Q j + 1 E X *
862 861 3ad2antl1 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X *
863 855 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j
864 624 3ad2ant1 φ j 0 ..^ M E X Q j Q j + 1 E X
865 856 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j *
866 810 3adant3 φ j 0 ..^ M E X Q j Q j + 1 Q j + 1 *
867 simp3 φ j 0 ..^ M E X Q j Q j + 1 E X Q j Q j + 1
868 iocgtlb Q j * Q j + 1 * E X Q j Q j + 1 Q j < E X
869 865 866 867 868 syl3anc φ j 0 ..^ M E X Q j Q j + 1 Q j < E X
870 863 864 869 ltled φ j 0 ..^ M E X Q j Q j + 1 Q j E X
871 870 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j E X
872 864 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X
873 809 adantr φ j 0 ..^ M ¬ E X = Q j + 1 Q j + 1
874 873 3adantl3 φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1
875 iocleub Q j * Q j + 1 * E X Q j Q j + 1 E X Q j + 1
876 865 866 867 875 syl3anc φ j 0 ..^ M E X Q j Q j + 1 E X Q j + 1
877 876 adantr φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j + 1
878 neqne ¬ E X = Q j + 1 E X Q j + 1
879 878 necomd ¬ E X = Q j + 1 Q j + 1 E X
880 879 adantl φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 Q j + 1 E X
881 872 874 877 880 leneltd φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X < Q j + 1
882 858 860 862 871 881 elicod φ j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j Q j + 1
883 852 882 sylan φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 E X Q j Q j + 1
884 765 767 oveq12d i = j Q i Q i + 1 = Q j Q j + 1
885 884 eleq2d i = j E X Q i Q i + 1 E X Q j Q j + 1
886 885 rspcev j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
887 850 883 886 syl2anc φ E X B j 0 ..^ M E X Q j Q j + 1 ¬ E X = Q j + 1 i 0 ..^ M E X Q i Q i + 1
888 849 887 pm2.61dan φ E X B j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
889 888 rexlimdv3a φ E X B j 0 ..^ M E X Q j Q j + 1 i 0 ..^ M E X Q i Q i + 1
890 772 889 mpd φ E X B i 0 ..^ M E X Q i Q i + 1
891 simpr φ E X B E X Q i Q i + 1 E X Q i Q i + 1
892 oveq1 k = B X T k T = B X T T
893 892 oveq2d k = B X T X + k T = X + B X T T
894 893 eqeq2d k = B X T E X = X + k T E X = X + B X T T
895 894 rspcev B X T E X = X + B X T T k E X = X + k T
896 102 110 895 syl2anc φ k E X = X + k T
897 896 ad2antrr φ E X B E X Q i Q i + 1 k E X = X + k T
898 r19.42v k E X Q i Q i + 1 E X = X + k T E X Q i Q i + 1 k E X = X + k T
899 891 897 898 sylanbrc φ E X B E X Q i Q i + 1 k E X Q i Q i + 1 E X = X + k T
900 899 ex φ E X B E X Q i Q i + 1 k E X Q i Q i + 1 E X = X + k T
901 900 reximdv φ E X B i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
902 890 901 mpd φ E X B i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
903 626 902 jca φ E X B φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
904 eleq1 y = E X y Q i Q i + 1 E X Q i Q i + 1
905 eqeq1 y = E X y = X + k T E X = X + k T
906 904 905 anbi12d y = E X y Q i Q i + 1 y = X + k T E X Q i Q i + 1 E X = X + k T
907 906 2rexbidv y = E X i 0 ..^ M k y Q i Q i + 1 y = X + k T i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
908 907 anbi2d y = E X φ i 0 ..^ M k y Q i Q i + 1 y = X + k T φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T
909 908 imbi1d y = E X φ i 0 ..^ M k y Q i Q i + 1 y = X + k T F X +∞ lim X φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T F X +∞ lim X
910 909 611 vtoclg E X φ i 0 ..^ M k E X Q i Q i + 1 E X = X + k T F X +∞ lim X
911 625 903 910 sylc φ E X B F X +∞ lim X
912 613 911 pm2.61dane φ F X +∞ lim X