Metamath Proof Explorer


Theorem fsumcom2

Description: Interchange order of summation. Note that B ( j ) and D ( k ) are not necessarily constant expressions. (Contributed by Mario Carneiro, 28-Apr-2014) (Revised by Mario Carneiro, 8-Apr-2016) (Proof shortened by JJ, 2-Aug-2021)

Ref Expression
Hypotheses fsumcom2.1 φAFin
fsumcom2.2 φCFin
fsumcom2.3 φjABFin
fsumcom2.4 φjAkBkCjD
fsumcom2.5 φjAkBE
Assertion fsumcom2 φjAkBE=kCjDE

Proof

Step Hyp Ref Expression
1 fsumcom2.1 φAFin
2 fsumcom2.2 φCFin
3 fsumcom2.3 φjABFin
4 fsumcom2.4 φjAkBkCjD
5 fsumcom2.5 φjAkBE
6 relxp Relj×B
7 6 rgenw jARelj×B
8 reliun ReljAj×BjARelj×B
9 7 8 mpbir ReljAj×B
10 relcnv RelkCk×D-1
11 ancom x=jy=ky=kx=j
12 vex xV
13 vex yV
14 12 13 opth xy=jkx=jy=k
15 13 12 opth yx=kjy=kx=j
16 11 14 15 3bitr4i xy=jkyx=kj
17 16 a1i φxy=jkyx=kj
18 17 4 anbi12d φxy=jkjAkByx=kjkCjD
19 18 2exbidv φjkxy=jkjAkBjkyx=kjkCjD
20 eliunxp xyjAj×Bjkxy=jkjAkB
21 12 13 opelcnv xykCk×D-1yxkCk×D
22 eliunxp yxkCk×Dkjyx=kjkCjD
23 excom kjyx=kjkCjDjkyx=kjkCjD
24 21 22 23 3bitri xykCk×D-1jkyx=kjkCjD
25 19 20 24 3bitr4g φxyjAj×BxykCk×D-1
26 9 10 25 eqrelrdv φjAj×B=kCk×D-1
27 nfcv _mj×B
28 nfcv _jm
29 nfcsb1v _jm/jB
30 28 29 nfxp _jm×m/jB
31 sneq j=mj=m
32 csbeq1a j=mB=m/jB
33 31 32 xpeq12d j=mj×B=m×m/jB
34 27 30 33 cbviun jAj×B=mAm×m/jB
35 nfcv _nk×D
36 nfcv _kn
37 nfcsb1v _kn/kD
38 36 37 nfxp _kn×n/kD
39 sneq k=nk=n
40 csbeq1a k=nD=n/kD
41 39 40 xpeq12d k=nk×D=n×n/kD
42 35 38 41 cbviun kCk×D=nCn×n/kD
43 42 cnveqi kCk×D-1=nCn×n/kD-1
44 26 34 43 3eqtr3g φmAm×m/jB=nCn×n/kD-1
45 44 sumeq1d φzmAm×m/jB2ndz/k1stz/jE=znCn×n/kD-12ndz/k1stz/jE
46 vex nV
47 vex mV
48 46 47 op1std w=nm1stw=n
49 48 csbeq1d w=nm1stw/k2ndw/jE=n/k2ndw/jE
50 46 47 op2ndd w=nm2ndw=m
51 50 csbeq1d w=nm2ndw/jE=m/jE
52 51 csbeq2dv w=nmn/k2ndw/jE=n/km/jE
53 49 52 eqtrd w=nm1stw/k2ndw/jE=n/km/jE
54 47 46 op2ndd z=mn2ndz=n
55 54 csbeq1d z=mn2ndz/k1stz/jE=n/k1stz/jE
56 47 46 op1std z=mn1stz=m
57 56 csbeq1d z=mn1stz/jE=m/jE
58 57 csbeq2dv z=mnn/k1stz/jE=n/km/jE
59 55 58 eqtrd z=mn2ndz/k1stz/jE=n/km/jE
60 snfi nFin
61 1 adantr φnCAFin
62 47 46 opelcnv mnkCk×D-1nmkCk×D
63 37 40 opeliunxp2f nmkCk×DnCmn/kD
64 62 63 sylbbr nCmn/kDmnkCk×D-1
65 64 adantl φnCmn/kDmnkCk×D-1
66 26 adantr φnCmn/kDjAj×B=kCk×D-1
67 65 66 eleqtrrd φnCmn/kDmnjAj×B
68 eliun mnjAj×BjAmnj×B
69 67 68 sylib φnCmn/kDjAmnj×B
70 simpr jAmnj×Bmnj×B
71 opelxp mnj×BmjnB
72 70 71 sylib jAmnj×BmjnB
73 72 simpld jAmnj×Bmj
74 elsni mjm=j
75 73 74 syl jAmnj×Bm=j
76 simpl jAmnj×BjA
77 75 76 eqeltrd jAmnj×BmA
78 77 rexlimiva jAmnj×BmA
79 69 78 syl φnCmn/kDmA
80 79 expr φnCmn/kDmA
81 80 ssrdv φnCn/kDA
82 61 81 ssfid φnCn/kDFin
83 xpfi nFinn/kDFinn×n/kDFin
84 60 82 83 sylancr φnCn×n/kDFin
85 84 ralrimiva φnCn×n/kDFin
86 iunfi CFinnCn×n/kDFinnCn×n/kDFin
87 2 85 86 syl2anc φnCn×n/kDFin
88 reliun RelnCn×n/kDnCReln×n/kD
89 relxp Reln×n/kD
90 89 a1i nCReln×n/kD
91 88 90 mprgbir RelnCn×n/kD
92 91 a1i φRelnCn×n/kD
93 csbeq1 m=2ndwm/jE=2ndw/jE
94 93 csbeq2dv m=2ndw1stw/km/jE=1stw/k2ndw/jE
95 94 eleq1d m=2ndw1stw/km/jE1stw/k2ndw/jE
96 csbeq1 n=1stwn/kD=1stw/kD
97 csbeq1 n=1stwn/km/jE=1stw/km/jE
98 97 eleq1d n=1stwn/km/jE1stw/km/jE
99 96 98 raleqbidv n=1stwmn/kDn/km/jEm1stw/kD1stw/km/jE
100 simpl φnCmn/kDφ
101 29 nfcri jnm/jB
102 74 equcomd mjj=m
103 102 32 syl mjB=m/jB
104 103 eleq2d mjnBnm/jB
105 104 biimpa mjnBnm/jB
106 71 105 sylbi mnj×Bnm/jB
107 106 a1i jAmnj×Bnm/jB
108 101 107 rexlimi jAmnj×Bnm/jB
109 69 108 syl φnCmn/kDnm/jB
110 5 ralrimivva φjAkBE
111 nfcsb1v _jm/jE
112 111 nfel1 jm/jE
113 29 112 nfralw jkm/jBm/jE
114 csbeq1a j=mE=m/jE
115 114 eleq1d j=mEm/jE
116 32 115 raleqbidv j=mkBEkm/jBm/jE
117 113 116 rspc mAjAkBEkm/jBm/jE
118 110 117 mpan9 φmAkm/jBm/jE
119 nfcsb1v _kn/km/jE
120 119 nfel1 kn/km/jE
121 csbeq1a k=nm/jE=n/km/jE
122 121 eleq1d k=nm/jEn/km/jE
123 120 122 rspc nm/jBkm/jBm/jEn/km/jE
124 118 123 syl5com φmAnm/jBn/km/jE
125 124 impr φmAnm/jBn/km/jE
126 100 79 109 125 syl12anc φnCmn/kDn/km/jE
127 126 ralrimivva φnCmn/kDn/km/jE
128 127 adantr φwnCn×n/kDnCmn/kDn/km/jE
129 simpr φwnCn×n/kDwnCn×n/kD
130 eliun wnCn×n/kDnCwn×n/kD
131 129 130 sylib φwnCn×n/kDnCwn×n/kD
132 xp1st wn×n/kD1stwn
133 132 adantl nCwn×n/kD1stwn
134 elsni 1stwn1stw=n
135 133 134 syl nCwn×n/kD1stw=n
136 simpl nCwn×n/kDnC
137 135 136 eqeltrd nCwn×n/kD1stwC
138 137 rexlimiva nCwn×n/kD1stwC
139 131 138 syl φwnCn×n/kD1stwC
140 99 128 139 rspcdva φwnCn×n/kDm1stw/kD1stw/km/jE
141 xp2nd wn×n/kD2ndwn/kD
142 141 adantl nCwn×n/kD2ndwn/kD
143 135 csbeq1d nCwn×n/kD1stw/kD=n/kD
144 142 143 eleqtrrd nCwn×n/kD2ndw1stw/kD
145 144 rexlimiva nCwn×n/kD2ndw1stw/kD
146 131 145 syl φwnCn×n/kD2ndw1stw/kD
147 95 140 146 rspcdva φwnCn×n/kD1stw/k2ndw/jE
148 53 59 87 92 147 fsumcnv φwnCn×n/kD1stw/k2ndw/jE=znCn×n/kD-12ndz/k1stz/jE
149 45 148 eqtr4d φzmAm×m/jB2ndz/k1stz/jE=wnCn×n/kD1stw/k2ndw/jE
150 3 ralrimiva φjABFin
151 29 nfel1 jm/jBFin
152 32 eleq1d j=mBFinm/jBFin
153 151 152 rspc mAjABFinm/jBFin
154 150 153 mpan9 φmAm/jBFin
155 59 1 154 125 fsum2d φmAnm/jBn/km/jE=zmAm×m/jB2ndz/k1stz/jE
156 53 2 82 126 fsum2d φnCmn/kDn/km/jE=wnCn×n/kD1stw/k2ndw/jE
157 149 155 156 3eqtr4d φmAnm/jBn/km/jE=nCmn/kDn/km/jE
158 nfcv _mkBE
159 nfcv _jn
160 159 111 nfcsbw _jn/km/jE
161 29 160 nfsum _jnm/jBn/km/jE
162 nfcv _nE
163 nfcsb1v _kn/kE
164 csbeq1a k=nE=n/kE
165 162 163 164 cbvsumi kBE=nBn/kE
166 114 csbeq2dv j=mn/kE=n/km/jE
167 166 adantr j=mnBn/kE=n/km/jE
168 32 167 sumeq12dv j=mnBn/kE=nm/jBn/km/jE
169 165 168 eqtrid j=mkBE=nm/jBn/km/jE
170 158 161 169 cbvsumi jAkBE=mAnm/jBn/km/jE
171 nfcv _njDE
172 37 119 nfsum _kmn/kDn/km/jE
173 nfcv _mE
174 173 111 114 cbvsumi jDE=mDm/jE
175 121 adantr k=nmDm/jE=n/km/jE
176 40 175 sumeq12dv k=nmDm/jE=mn/kDn/km/jE
177 174 176 eqtrid k=njDE=mn/kDn/km/jE
178 171 172 177 cbvsumi kCjDE=nCmn/kDn/km/jE
179 157 170 178 3eqtr4g φjAkBE=kCjDE