Metamath Proof Explorer


Theorem gg-dvcnp2

Description: A function is continuous at each point for which it is differentiable. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 28-Dec-2016) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-dvcnp.j J=K𝑡A
gg-dvcnp.k K=TopOpenfld
Assertion gg-dvcnp2 SF:AASBdomFSFJCnPKB

Proof

Step Hyp Ref Expression
1 gg-dvcnp.j J=K𝑡A
2 gg-dvcnp.k K=TopOpenfld
3 simpl2 SF:AASBFSyF:A
4 3 ffvelcdmda SF:AASBFSyzAFz
5 2 cnfldtop KTop
6 simpl1 SF:AASBFSyS
7 cnex V
8 ssexg SVSV
9 6 7 8 sylancl SF:AASBFSySV
10 resttop KTopSVK𝑡STop
11 5 9 10 sylancr SF:AASBFSyK𝑡STop
12 simpl3 SF:AASBFSyAS
13 2 cnfldtopon KTopOn
14 resttopon KTopOnSK𝑡STopOnS
15 13 6 14 sylancr SF:AASBFSyK𝑡STopOnS
16 toponuni K𝑡STopOnSS=K𝑡S
17 15 16 syl SF:AASBFSyS=K𝑡S
18 12 17 sseqtrd SF:AASBFSyAK𝑡S
19 eqid K𝑡S=K𝑡S
20 19 ntrss2 K𝑡STopAK𝑡SintK𝑡SAA
21 11 18 20 syl2anc SF:AASBFSyintK𝑡SAA
22 eqid K𝑡S=K𝑡S
23 eqid zABFzFBzB=zABFzFBzB
24 simp1 SF:AASS
25 simp2 SF:AASF:A
26 simp3 SF:AASAS
27 22 2 23 24 25 26 eldv SF:AASBFSyBintK𝑡SAyzABFzFBzBlimB
28 27 simprbda SF:AASBFSyBintK𝑡SA
29 21 28 sseldd SF:AASBFSyBA
30 3 29 ffvelcdmd SF:AASBFSyFB
31 30 adantr SF:AASBFSyzAFB
32 4 31 subcld SF:AASBFSyzAFzFB
33 ssidd SF:AASBFSy
34 txtopon KTopOnKTopOnK×tKTopOn×
35 13 13 34 mp2an K×tKTopOn×
36 35 toponrestid K×tK=K×tK𝑡×
37 12 6 sstrd SF:AASBFSyA
38 eqid xABFxFBxB=xABFxFBxB
39 22 2 38 24 25 26 eldv SF:AASBFSyBintK𝑡SAyxABFxFBxBlimB
40 39 simprbda SF:AASBFSyBintK𝑡SA
41 21 40 sseldd SF:AASBFSyBA
42 3 37 41 dvlem SF:AASBFSyzABFzFBzB
43 37 ssdifssd SF:AASBFSyAB
44 43 sselda SF:AASBFSyzABz
45 37 41 sseldd SF:AASBFSyB
46 45 adantr SF:AASBFSyzABB
47 44 46 subcld SF:AASBFSyzABzB
48 27 simplbda SF:AASBFSyyzABFzFBzBlimB
49 limcresi zAzBlimBzAzBABlimB
50 difss ABA
51 resmpt ABAzAzBAB=zABzB
52 50 51 ax-mp zAzBAB=zABzB
53 52 oveq1i zAzBABlimB=zABzBlimB
54 49 53 sseqtri zAzBlimBzABzBlimB
55 45 subidd SF:AASBFSyBB=0
56 ssid
57 cncfmptid AzAz:Acn
58 37 56 57 sylancl SF:AASBFSyzAz:Acn
59 cncfmptc BAzAB:Acn
60 45 37 33 59 syl3anc SF:AASBFSyzAB:Acn
61 58 60 subcncf SF:AASBFSyzAzB:Acn
62 oveq1 z=BzB=BB
63 61 41 62 cnmptlimc SF:AASBFSyBBzAzBlimB
64 55 63 eqeltrrd SF:AASBFSy0zAzBlimB
65 54 64 sselid SF:AASBFSy0zABzBlimB
66 2 mpomulcn u,vuvK×tKCnK
67 24 25 26 dvcl SF:AASBFSyy
68 0cn 0
69 opelxpi y0y0×
70 67 68 69 sylancl SF:AASBFSyy0×
71 35 toponunii ×=K×tK
72 71 cncnpi u,vuvK×tKCnKy0×u,vuvK×tKCnPKy0
73 66 70 72 sylancr SF:AASBFSyu,vuvK×tKCnPKy0
74 42 47 33 33 2 36 48 65 73 limccnp2 SF:AASBFSyyu,vuv0zABFzFBzBu,vuvzBlimB
75 df-mpt zABFzFBzBu,vuvzB=zw|zABw=FzFBzBu,vuvzB
76 75 oveq1i zABFzFBzBu,vuvzBlimB=zw|zABw=FzFBzBu,vuvzBlimB
77 74 76 eleqtrdi SF:AASBFSyyu,vuv0zw|zABw=FzFBzBu,vuvzBlimB
78 0cnd SF:AASBFSy0
79 ovmul y0yu,vuv0=y0
80 67 78 79 syl2anc SF:AASBFSyyu,vuv0=y0
81 3 37 29 dvlem SF:AASBFSyzABFzFBzB
82 37 29 sseldd SF:AASBFSyB
83 82 adantr SF:AASBFSyzABB
84 44 83 subcld SF:AASBFSyzABzB
85 ovmul FzFBzBzBFzFBzBu,vuvzB=FzFBzBzB
86 81 84 85 syl2anc SF:AASBFSyzABFzFBzBu,vuvzB=FzFBzBzB
87 86 eqeq2d SF:AASBFSyzABw=FzFBzBu,vuvzBw=FzFBzBzB
88 87 pm5.32da SF:AASBFSyzABw=FzFBzBu,vuvzBzABw=FzFBzBzB
89 88 opabbidv SF:AASBFSyzw|zABw=FzFBzBu,vuvzB=zw|zABw=FzFBzBzB
90 df-mpt zABFzFBzBzB=zw|zABw=FzFBzBzB
91 89 90 eqtr4di SF:AASBFSyzw|zABw=FzFBzBu,vuvzB=zABFzFBzBzB
92 91 oveq1d SF:AASBFSyzw|zABw=FzFBzBu,vuvzBlimB=zABFzFBzBzBlimB
93 77 80 92 3eltr3d SF:AASBFSyy0zABFzFBzBzBlimB
94 67 mul01d SF:AASBFSyy0=0
95 3 adantr SF:AASBFSyzABF:A
96 simpr SF:AASBFSyzABzAB
97 50 96 sselid SF:AASBFSyzABzA
98 95 97 ffvelcdmd SF:AASBFSyzABFz
99 30 adantr SF:AASBFSyzABFB
100 98 99 subcld SF:AASBFSyzABFzFB
101 eldifsni zABzB
102 101 adantl SF:AASBFSyzABzB
103 44 83 102 subne0d SF:AASBFSyzABzB0
104 100 84 103 divcan1d SF:AASBFSyzABFzFBzBzB=FzFB
105 104 mpteq2dva SF:AASBFSyzABFzFBzBzB=zABFzFB
106 105 oveq1d SF:AASBFSyzABFzFBzBzBlimB=zABFzFBlimB
107 93 94 106 3eltr3d SF:AASBFSy0zABFzFBlimB
108 32 fmpttd SF:AASBFSyzAFzFB:A
109 108 limcdif SF:AASBFSyzAFzFBlimB=zAFzFBABlimB
110 resmpt ABAzAFzFBAB=zABFzFB
111 50 110 ax-mp zAFzFBAB=zABFzFB
112 111 oveq1i zAFzFBABlimB=zABFzFBlimB
113 109 112 eqtrdi SF:AASBFSyzAFzFBlimB=zABFzFBlimB
114 107 113 eleqtrrd SF:AASBFSy0zAFzFBlimB
115 cncfmptc FBAzAFB:Acn
116 30 37 33 115 syl3anc SF:AASBFSyzAFB:Acn
117 eqidd z=BFB=FB
118 116 29 117 cnmptlimc SF:AASBFSyFBzAFBlimB
119 2 addcn +K×tKCnK
120 opelxpi 0FB0FB×
121 68 30 120 sylancr SF:AASBFSy0FB×
122 71 cncnpi +K×tKCnK0FB×+K×tKCnPK0FB
123 119 121 122 sylancr SF:AASBFSy+K×tKCnPK0FB
124 32 31 33 33 2 36 114 118 123 limccnp2 SF:AASBFSy0+FBzAFz-FB+FBlimB
125 30 addlidd SF:AASBFSy0+FB=FB
126 4 31 npcand SF:AASBFSyzAFz-FB+FB=Fz
127 126 mpteq2dva SF:AASBFSyzAFz-FB+FB=zAFz
128 3 feqmptd SF:AASBFSyF=zAFz
129 127 128 eqtr4d SF:AASBFSyzAFz-FB+FB=F
130 129 oveq1d SF:AASBFSyzAFz-FB+FBlimB=FlimB
131 124 125 130 3eltr3d SF:AASBFSyFBFlimB
132 2 1 cnplimc ABAFJCnPKBF:AFBFlimB
133 37 29 132 syl2anc SF:AASBFSyFJCnPKBF:AFBFlimB
134 3 131 133 mpbir2and SF:AASBFSyFJCnPKB
135 134 ex SF:AASBFSyFJCnPKB
136 135 exlimdv SF:AASyBFSyFJCnPKB
137 eldmg BdomFSBdomFSyBFSy
138 137 ibi BdomFSyBFSy
139 136 138 impel SF:AASBdomFSFJCnPKB