Metamath Proof Explorer


Theorem gsumesum

Description: Relate a group sum on ` ( RR*s |``s ( 0 , +oo ) ) ` to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses gsumesum.0 kφ
gsumesum.1 φAFin
gsumesum.2 φkAB0+∞
Assertion gsumesum φ𝑠*𝑠0+∞kAB=*kAB

Proof

Step Hyp Ref Expression
1 gsumesum.0 kφ
2 gsumesum.1 φAFin
3 gsumesum.2 φkAB0+∞
4 nfcv _kA
5 eqidd φx𝒫AFin𝑠*𝑠0+∞kxB=𝑠*𝑠0+∞kxB
6 1 4 2 3 5 esumval φ*kAB=supranx𝒫AFin𝑠*𝑠0+∞kxB*<
7 xrltso <Or*
8 7 a1i φ<Or*
9 iccssxr 0+∞*
10 xrge0base 0+∞=Base𝑠*𝑠0+∞
11 xrge0cmn 𝑠*𝑠0+∞CMnd
12 11 a1i φ𝑠*𝑠0+∞CMnd
13 3 ex φkAB0+∞
14 1 13 ralrimi φkAB0+∞
15 10 12 2 14 gsummptcl φ𝑠*𝑠0+∞kAB0+∞
16 9 15 sselid φ𝑠*𝑠0+∞kAB*
17 pwidg AFinA𝒫A
18 2 17 syl φA𝒫A
19 18 2 elind φA𝒫AFin
20 eqidd φ𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kAB
21 mpteq1 x=AkxB=kAB
22 21 oveq2d x=A𝑠*𝑠0+∞kxB=𝑠*𝑠0+∞kAB
23 22 rspceeqv A𝒫AFin𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kABx𝒫AFin𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kxB
24 19 20 23 syl2anc φx𝒫AFin𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kxB
25 eqid x𝒫AFin𝑠*𝑠0+∞kxB=x𝒫AFin𝑠*𝑠0+∞kxB
26 ovex 𝑠*𝑠0+∞kxBV
27 25 26 elrnmpti 𝑠*𝑠0+∞kABranx𝒫AFin𝑠*𝑠0+∞kxBx𝒫AFin𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kxB
28 24 27 sylibr φ𝑠*𝑠0+∞kABranx𝒫AFin𝑠*𝑠0+∞kxB
29 simpr φyranx𝒫AFin𝑠*𝑠0+∞kxByranx𝒫AFin𝑠*𝑠0+∞kxB
30 mpteq1 x=akxB=kaB
31 30 oveq2d x=a𝑠*𝑠0+∞kxB=𝑠*𝑠0+∞kaB
32 31 cbvmptv x𝒫AFin𝑠*𝑠0+∞kxB=a𝒫AFin𝑠*𝑠0+∞kaB
33 ovex 𝑠*𝑠0+∞kaBV
34 32 33 elrnmpti yranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFiny=𝑠*𝑠0+∞kaB
35 29 34 sylib φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFiny=𝑠*𝑠0+∞kaB
36 11 a1i φa𝒫AFin𝑠*𝑠0+∞CMnd
37 inss2 𝒫AFinFin
38 simpr φa𝒫AFina𝒫AFin
39 37 38 sselid φa𝒫AFinaFin
40 nfv ka𝒫AFin
41 1 40 nfan kφa𝒫AFin
42 simpll φa𝒫AFinkaφ
43 inss1 𝒫AFin𝒫A
44 43 sseli a𝒫AFina𝒫A
45 44 elpwid a𝒫AFinaA
46 45 ad2antlr φa𝒫AFinkaaA
47 simpr φa𝒫AFinkaka
48 46 47 sseldd φa𝒫AFinkakA
49 42 48 3 syl2anc φa𝒫AFinkaB0+∞
50 49 ex φa𝒫AFinkaB0+∞
51 41 50 ralrimi φa𝒫AFinkaB0+∞
52 10 36 39 51 gsummptcl φa𝒫AFin𝑠*𝑠0+∞kaB0+∞
53 9 52 sselid φa𝒫AFin𝑠*𝑠0+∞kaB*
54 diffi AFinAaFin
55 2 54 syl φAaFin
56 55 adantr φa𝒫AFinAaFin
57 simpll φa𝒫AFinkAaφ
58 simpr φa𝒫AFinkAakAa
59 58 eldifad φa𝒫AFinkAakA
60 57 59 3 syl2anc φa𝒫AFinkAaB0+∞
61 60 ex φa𝒫AFinkAaB0+∞
62 41 61 ralrimi φa𝒫AFinkAaB0+∞
63 10 36 56 62 gsummptcl φa𝒫AFin𝑠*𝑠0+∞kAaB0+∞
64 9 63 sselid φa𝒫AFin𝑠*𝑠0+∞kAaB*
65 elxrge0 𝑠*𝑠0+∞kAaB0+∞𝑠*𝑠0+∞kAaB*0𝑠*𝑠0+∞kAaB
66 65 simprbi 𝑠*𝑠0+∞kAaB0+∞0𝑠*𝑠0+∞kAaB
67 63 66 syl φa𝒫AFin0𝑠*𝑠0+∞kAaB
68 xraddge02 𝑠*𝑠0+∞kaB*𝑠*𝑠0+∞kAaB*0𝑠*𝑠0+∞kAaB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
69 68 imp 𝑠*𝑠0+∞kaB*𝑠*𝑠0+∞kAaB*0𝑠*𝑠0+∞kAaB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
70 53 64 67 69 syl21anc φa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
71 70 adantlr φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
72 simpll φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFinφ
73 45 adantl φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFinaA
74 xrge00 0=0𝑠*𝑠0+∞
75 xrge0plusg +𝑒=+𝑠*𝑠0+∞
76 11 a1i φaA𝑠*𝑠0+∞CMnd
77 2 adantr φaAAFin
78 eqid kAB=kAB
79 1 3 78 fmptdf φkAB:A0+∞
80 79 adantr φaAkAB:A0+∞
81 78 fnmpt kAB0+∞kABFnA
82 14 81 syl φkABFnA
83 c0ex 0V
84 83 a1i φ0V
85 82 2 84 fndmfifsupp φfinSupp0kAB
86 85 adantr φaAfinSupp0kAB
87 disjdif aAa=
88 87 a1i φaAaAa=
89 undif aAaAa=A
90 89 biimpi aAaAa=A
91 90 eqcomd aAA=aAa
92 91 adantl φaAA=aAa
93 10 74 75 76 77 80 86 88 92 gsumsplit φaA𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kABa+𝑒𝑠*𝑠0+∞kABAa
94 resmpt aAkABa=kaB
95 94 oveq2d aA𝑠*𝑠0+∞kABa=𝑠*𝑠0+∞kaB
96 95 adantl φaA𝑠*𝑠0+∞kABa=𝑠*𝑠0+∞kaB
97 difss AaA
98 resmpt AaAkABAa=kAaB
99 97 98 ax-mp kABAa=kAaB
100 99 oveq2i 𝑠*𝑠0+∞kABAa=𝑠*𝑠0+∞kAaB
101 100 a1i φaA𝑠*𝑠0+∞kABAa=𝑠*𝑠0+∞kAaB
102 96 101 oveq12d φaA𝑠*𝑠0+∞kABa+𝑒𝑠*𝑠0+∞kABAa=𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
103 93 102 eqtrd φaA𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
104 72 73 103 syl2anc φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFin𝑠*𝑠0+∞kAB=𝑠*𝑠0+∞kaB+𝑒𝑠*𝑠0+∞kAaB
105 71 104 breqtrrd φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kAB
106 105 ralrimiva φyranx𝒫AFin𝑠*𝑠0+∞kxBa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kAB
107 r19.29r a𝒫AFiny=𝑠*𝑠0+∞kaBa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kABa𝒫AFiny=𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kAB
108 breq1 y=𝑠*𝑠0+∞kaBy𝑠*𝑠0+∞kAB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kAB
109 108 biimpar y=𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kABy𝑠*𝑠0+∞kAB
110 109 rexlimivw a𝒫AFiny=𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kABy𝑠*𝑠0+∞kAB
111 107 110 syl a𝒫AFiny=𝑠*𝑠0+∞kaBa𝒫AFin𝑠*𝑠0+∞kaB𝑠*𝑠0+∞kABy𝑠*𝑠0+∞kAB
112 35 106 111 syl2anc φyranx𝒫AFin𝑠*𝑠0+∞kxBy𝑠*𝑠0+∞kAB
113 16 adantr φyranx𝒫AFin𝑠*𝑠0+∞kxB𝑠*𝑠0+∞kAB*
114 11 a1i φx𝒫AFin𝑠*𝑠0+∞CMnd
115 simpr φx𝒫AFinx𝒫AFin
116 37 115 sselid φx𝒫AFinxFin
117 nfv kx𝒫AFin
118 1 117 nfan kφx𝒫AFin
119 simpll φx𝒫AFinkxφ
120 43 sseli x𝒫AFinx𝒫A
121 120 ad2antlr φx𝒫AFinkxx𝒫A
122 121 elpwid φx𝒫AFinkxxA
123 simpr φx𝒫AFinkxkx
124 122 123 sseldd φx𝒫AFinkxkA
125 119 124 3 syl2anc φx𝒫AFinkxB0+∞
126 125 ex φx𝒫AFinkxB0+∞
127 118 126 ralrimi φx𝒫AFinkxB0+∞
128 10 114 116 127 gsummptcl φx𝒫AFin𝑠*𝑠0+∞kxB0+∞
129 9 128 sselid φx𝒫AFin𝑠*𝑠0+∞kxB*
130 129 ralrimiva φx𝒫AFin𝑠*𝑠0+∞kxB*
131 25 rnmptss x𝒫AFin𝑠*𝑠0+∞kxB*ranx𝒫AFin𝑠*𝑠0+∞kxB*
132 130 131 syl φranx𝒫AFin𝑠*𝑠0+∞kxB*
133 132 sselda φyranx𝒫AFin𝑠*𝑠0+∞kxBy*
134 xrltnle 𝑠*𝑠0+∞kAB*y*𝑠*𝑠0+∞kAB<y¬y𝑠*𝑠0+∞kAB
135 134 con2bid 𝑠*𝑠0+∞kAB*y*y𝑠*𝑠0+∞kAB¬𝑠*𝑠0+∞kAB<y
136 113 133 135 syl2anc φyranx𝒫AFin𝑠*𝑠0+∞kxBy𝑠*𝑠0+∞kAB¬𝑠*𝑠0+∞kAB<y
137 112 136 mpbid φyranx𝒫AFin𝑠*𝑠0+∞kxB¬𝑠*𝑠0+∞kAB<y
138 8 16 28 137 supmax φsupranx𝒫AFin𝑠*𝑠0+∞kxB*<=𝑠*𝑠0+∞kAB
139 6 138 eqtr2d φ𝑠*𝑠0+∞kAB=*kAB