Metamath Proof Explorer


Theorem gsumzmhm

Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzmhm.b B=BaseG
gsumzmhm.z Z=CntzG
gsumzmhm.g φGMnd
gsumzmhm.h φHMnd
gsumzmhm.a φAV
gsumzmhm.k φKGMndHomH
gsumzmhm.f φF:AB
gsumzmhm.c φranFZranF
gsumzmhm.0 0˙=0G
gsumzmhm.w φfinSupp0˙F
Assertion gsumzmhm φHKF=KGF

Proof

Step Hyp Ref Expression
1 gsumzmhm.b B=BaseG
2 gsumzmhm.z Z=CntzG
3 gsumzmhm.g φGMnd
4 gsumzmhm.h φHMnd
5 gsumzmhm.a φAV
6 gsumzmhm.k φKGMndHomH
7 gsumzmhm.f φF:AB
8 gsumzmhm.c φranFZranF
9 gsumzmhm.0 0˙=0G
10 gsumzmhm.w φfinSupp0˙F
11 eqid 0H=0H
12 11 gsumz HMndAVHkA0H=0H
13 4 5 12 syl2anc φHkA0H=0H
14 13 adantr φF-1V0˙=HkA0H=0H
15 9 11 mhm0 KGMndHomHK0˙=0H
16 6 15 syl φK0˙=0H
17 16 adantr φF-1V0˙=K0˙=0H
18 14 17 eqtr4d φF-1V0˙=HkA0H=K0˙
19 1 9 mndidcl GMnd0˙B
20 3 19 syl φ0˙B
21 20 ad2antrr φF-1V0˙=kA0˙B
22 9 fvexi 0˙V
23 22 a1i φ0˙V
24 7 5 fexd φFV
25 suppimacnv FV0˙VFsupp0˙=F-1V0˙
26 24 23 25 syl2anc φFsupp0˙=F-1V0˙
27 ssid F-1V0˙F-1V0˙
28 26 27 eqsstrdi φFsupp0˙F-1V0˙
29 7 5 23 28 gsumcllem φF-1V0˙=F=kA0˙
30 eqid BaseH=BaseH
31 1 30 mhmf KGMndHomHK:BBaseH
32 6 31 syl φK:BBaseH
33 32 feqmptd φK=xBKx
34 33 adantr φF-1V0˙=K=xBKx
35 fveq2 x=0˙Kx=K0˙
36 21 29 34 35 fmptco φF-1V0˙=KF=kAK0˙
37 16 mpteq2dv φkAK0˙=kA0H
38 37 adantr φF-1V0˙=kAK0˙=kA0H
39 36 38 eqtrd φF-1V0˙=KF=kA0H
40 39 oveq2d φF-1V0˙=HKF=HkA0H
41 29 oveq2d φF-1V0˙=GF=GkA0˙
42 9 gsumz GMndAVGkA0˙=0˙
43 3 5 42 syl2anc φGkA0˙=0˙
44 43 adantr φF-1V0˙=GkA0˙=0˙
45 41 44 eqtrd φF-1V0˙=GF=0˙
46 45 fveq2d φF-1V0˙=KGF=K0˙
47 18 40 46 3eqtr4d φF-1V0˙=HKF=KGF
48 47 ex φF-1V0˙=HKF=KGF
49 3 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙GMnd
50 eqid +G=+G
51 1 50 mndcl GMndxByBx+GyB
52 51 3expb GMndxByBx+GyB
53 49 52 sylan φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xByBx+GyB
54 f1of1 f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1F-1V0˙
55 54 ad2antll φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1F-1V0˙
56 cnvimass F-1V0˙domF
57 7 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F:AB
58 56 57 fssdm φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙A
59 f1ss f:1F-1V0˙1-1F-1V0˙F-1V0˙Af:1F-1V0˙1-1A
60 55 58 59 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1A
61 f1f f:1F-1V0˙1-1Af:1F-1V0˙A
62 60 61 syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙A
63 fco F:ABf:1F-1V0˙AFf:1F-1V0˙B
64 7 62 63 syl2an2r φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Ff:1F-1V0˙B
65 64 ffvelcdmda φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙x1F-1V0˙FfxB
66 simprl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙
67 nnuz =1
68 66 67 eleqtrdi φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙1
69 6 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KGMndHomH
70 eqid +H=+H
71 1 50 70 mhmlin KGMndHomHxByBKx+Gy=Kx+HKy
72 71 3expb KGMndHomHxByBKx+Gy=Kx+HKy
73 69 72 sylan φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xByBKx+Gy=Kx+HKy
74 coass KFf=KFf
75 74 fveq1i KFfx=KFfx
76 fvco3 Ff:1F-1V0˙Bx1F-1V0˙KFfx=KFfx
77 64 76 sylan φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙x1F-1V0˙KFfx=KFfx
78 75 77 eqtr2id φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙x1F-1V0˙KFfx=KFfx
79 53 65 68 73 78 seqhomo φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Kseq1+GFfF-1V0˙=seq1+HKFfF-1V0˙
80 5 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙AV
81 8 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranFZranF
82 28 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙F-1V0˙
83 f1ofo f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙ontoF-1V0˙
84 forn f:1F-1V0˙ontoF-1V0˙ranf=F-1V0˙
85 83 84 syl f:1F-1V0˙1-1 ontoF-1V0˙ranf=F-1V0˙
86 85 ad2antll φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranf=F-1V0˙
87 82 86 sseqtrrd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙ranf
88 eqid Ffsupp0˙=Ffsupp0˙
89 1 9 50 2 49 80 57 81 66 60 87 88 gsumval3 φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙GF=seq1+GFfF-1V0˙
90 89 fveq2d φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KGF=Kseq1+GFfF-1V0˙
91 eqid CntzH=CntzH
92 4 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙HMnd
93 fco K:BBaseHF:ABKF:ABaseH
94 32 57 93 syl2an2r φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KF:ABaseH
95 2 91 cntzmhm2 KGMndHomHranFZranFKranFCntzHKranF
96 6 81 95 syl2an2r φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KranFCntzHKranF
97 rnco2 ranKF=KranF
98 97 fveq2i CntzHranKF=CntzHKranF
99 96 97 98 3sstr4g φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranKFCntzHranKF
100 eldifi xAF-1V0˙xA
101 fvco3 F:ABxAKFx=KFx
102 57 100 101 syl2an φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xAF-1V0˙KFx=KFx
103 22 a1i φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙0˙V
104 57 82 80 103 suppssr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xAF-1V0˙Fx=0˙
105 104 fveq2d φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xAF-1V0˙KFx=K0˙
106 16 ad2antrr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xAF-1V0˙K0˙=0H
107 102 105 106 3eqtrd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xAF-1V0˙KFx=0H
108 94 107 suppss φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KFsupp0HF-1V0˙
109 108 86 sseqtrrd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙KFsupp0Hranf
110 eqid KFfsupp0H=KFfsupp0H
111 30 11 70 91 92 80 94 99 66 60 109 110 gsumval3 φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙HKF=seq1+HKFfF-1V0˙
112 79 90 111 3eqtr4rd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙HKF=KGF
113 112 expr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙HKF=KGF
114 113 exlimdv φF-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙HKF=KGF
115 114 expimpd φF-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙HKF=KGF
116 10 fsuppimpd φFsupp0˙Fin
117 26 116 eqeltrrd φF-1V0˙Fin
118 fz1f1o F-1V0˙FinF-1V0˙=F-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙
119 117 118 syl φF-1V0˙=F-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙
120 48 115 119 mpjaod φHKF=KGF