Metamath Proof Explorer


Theorem iblabsnclem

Description: Lemma for iblabsnc ; cf. iblabslem . (Contributed by Brendan Leahy, 7-Nov-2017)

Ref Expression
Hypotheses iblabsnc.1 φxABV
iblabsnc.2 φxAB𝐿1
iblabsnclem.1 G=xifxAFB0
iblabsnclem.2 φxAFB𝐿1
iblabsnclem.3 φxAFB
Assertion iblabsnclem φGMblFn2G

Proof

Step Hyp Ref Expression
1 iblabsnc.1 φxABV
2 iblabsnc.2 φxAB𝐿1
3 iblabsnclem.1 G=xifxAFB0
4 iblabsnclem.2 φxAFB𝐿1
5 iblabsnclem.3 φxAFB
6 5 iblrelem φxAFB𝐿1xAFBMblFn2xifxA0FBFB02xifxA0FBFB0
7 4 6 mpbid φxAFBMblFn2xifxA0FBFB02xifxA0FBFB0
8 7 simp1d φxAFBMblFn
9 8 5 mbfdm2 φAdomvol
10 mblss AdomvolA
11 9 10 syl φA
12 rembl domvol
13 12 a1i φdomvol
14 5 recnd φxAFB
15 14 abscld φxAFB
16 0re 0
17 ifcl FB0ifxAFB0
18 15 16 17 sylancl φxAifxAFB0
19 eldifn xA¬xA
20 19 adantl φxA¬xA
21 iffalse ¬xAifxAFB0=0
22 20 21 syl φxAifxAFB0=0
23 iftrue xAifxAFB0=FB
24 23 mpteq2ia xAifxAFB0=xAFB
25 15 fmpttd φxAFB:A
26 15 adantlr φyxAFB
27 26 biantrurd φyxAy<FBFBy<FB
28 5 adantlr φyxAFB
29 simplr φyxAy
30 28 29 absled φyxAFByyFBFBy
31 30 notbid φyxA¬FBy¬yFBFBy
32 29 26 ltnled φyxAy<FB¬FBy
33 renegcl yy
34 33 rexrd yy*
35 34 ad2antlr φyxAy*
36 elioomnf y*FB−∞yFBFB<y
37 35 36 syl φyxAFB−∞yFBFB<y
38 28 biantrurd φyxAFB<yFBFB<y
39 29 renegcld φyxAy
40 28 39 ltnled φyxAFB<y¬yFB
41 37 38 40 3bitr2d φyxAFB−∞y¬yFB
42 rexr yy*
43 42 ad2antlr φyxAy*
44 elioopnf y*FBy+∞FBy<FB
45 43 44 syl φyxAFBy+∞FBy<FB
46 28 biantrurd φyxAy<FBFBy<FB
47 29 28 ltnled φyxAy<FB¬FBy
48 45 46 47 3bitr2d φyxAFBy+∞¬FBy
49 41 48 orbi12d φyxAFB−∞yFBy+∞¬yFB¬FBy
50 ianor ¬yFBFBy¬yFB¬FBy
51 49 50 bitr4di φyxAFB−∞yFBy+∞¬yFBFBy
52 31 32 51 3bitr4rd φyxAFB−∞yFBy+∞y<FB
53 elioopnf y*FBy+∞FBy<FB
54 43 53 syl φyxAFBy+∞FBy<FB
55 27 52 54 3bitr4rd φyxAFBy+∞FB−∞yFBy+∞
56 55 rabbidva φyxA|FBy+∞=xA|FB−∞yFBy+∞
57 eqid xAFB=xAFB
58 57 mptpreima xAFB-1y+∞=xA|FBy+∞
59 eqid xAFB=xAFB
60 59 mptpreima xAFB-1−∞y=xA|FB−∞y
61 59 mptpreima xAFB-1y+∞=xA|FBy+∞
62 60 61 uneq12i xAFB-1−∞yxAFB-1y+∞=xA|FB−∞yxA|FBy+∞
63 unrab xA|FB−∞yxA|FBy+∞=xA|FB−∞yFBy+∞
64 62 63 eqtri xAFB-1−∞yxAFB-1y+∞=xA|FB−∞yFBy+∞
65 56 58 64 3eqtr4g φyxAFB-1y+∞=xAFB-1−∞yxAFB-1y+∞
66 iblmbf xAFB𝐿1xAFBMblFn
67 4 66 syl φxAFBMblFn
68 5 fmpttd φxAFB:A
69 mbfima xAFBMblFnxAFB:AxAFB-1−∞ydomvol
70 mbfima xAFBMblFnxAFB:AxAFB-1y+∞domvol
71 unmbl xAFB-1−∞ydomvolxAFB-1y+∞domvolxAFB-1−∞yxAFB-1y+∞domvol
72 69 70 71 syl2anc xAFBMblFnxAFB:AxAFB-1−∞yxAFB-1y+∞domvol
73 67 68 72 syl2anc φxAFB-1−∞yxAFB-1y+∞domvol
74 73 adantr φyxAFB-1−∞yxAFB-1y+∞domvol
75 65 74 eqeltrd φyxAFB-1y+∞domvol
76 elioomnf y*FB−∞yFBFB<y
77 43 76 syl φyxAFB−∞yFBFB<y
78 26 biantrurd φyxAFB<yFBFB<y
79 28 29 absltd φyxAFB<yy<FBFB<y
80 77 78 79 3bitr2d φyxAFB−∞yy<FBFB<y
81 28 biantrurd φyxAy<FBFB<yFBy<FBFB<y
82 80 81 bitrd φyxAFB−∞yFBy<FBFB<y
83 3anass FBy<FBFB<yFBy<FBFB<y
84 82 83 bitr4di φyxAFB−∞yFBy<FBFB<y
85 elioo2 y*y*FByyFBy<FBFB<y
86 34 42 85 syl2anc yFByyFBy<FBFB<y
87 86 ad2antlr φyxAFByyFBy<FBFB<y
88 84 87 bitr4d φyxAFB−∞yFByy
89 88 rabbidva φyxA|FB−∞y=xA|FByy
90 57 mptpreima xAFB-1−∞y=xA|FB−∞y
91 59 mptpreima xAFB-1yy=xA|FByy
92 89 90 91 3eqtr4g φyxAFB-1−∞y=xAFB-1yy
93 mbfima xAFBMblFnxAFB:AxAFB-1yydomvol
94 67 68 93 syl2anc φxAFB-1yydomvol
95 94 adantr φyxAFB-1yydomvol
96 92 95 eqeltrd φyxAFB-1−∞ydomvol
97 25 9 75 96 ismbf2d φxAFBMblFn
98 24 97 eqeltrid φxAifxAFB0MblFn
99 11 13 18 22 98 mbfss φxifxAFB0MblFn
100 3 99 eqeltrid φGMblFn
101 reex V
102 101 a1i φV
103 ifan ifxA0FBFB0=ifxAif0FBFB00
104 ifcl FB0if0FBFB0
105 5 16 104 sylancl φxAif0FBFB0
106 max1 0FB0if0FBFB0
107 16 5 106 sylancr φxA0if0FBFB0
108 elrege0 if0FBFB00+∞if0FBFB00if0FBFB0
109 105 107 108 sylanbrc φxAif0FBFB00+∞
110 0e0icopnf 00+∞
111 110 a1i φ¬xA00+∞
112 109 111 ifclda φifxAif0FBFB000+∞
113 103 112 eqeltrid φifxA0FBFB00+∞
114 113 adantr φxifxA0FBFB00+∞
115 ifan ifxA0FBFB0=ifxAif0FBFB00
116 5 renegcld φxAFB
117 ifcl FB0if0FBFB0
118 116 16 117 sylancl φxAif0FBFB0
119 max1 0FB0if0FBFB0
120 16 116 119 sylancr φxA0if0FBFB0
121 elrege0 if0FBFB00+∞if0FBFB00if0FBFB0
122 118 120 121 sylanbrc φxAif0FBFB00+∞
123 122 111 ifclda φifxAif0FBFB000+∞
124 115 123 eqeltrid φifxA0FBFB00+∞
125 124 adantr φxifxA0FBFB00+∞
126 eqidd φxifxA0FBFB0=xifxA0FBFB0
127 eqidd φxifxA0FBFB0=xifxA0FBFB0
128 102 114 125 126 127 offval2 φxifxA0FBFB0+fxifxA0FBFB0=xifxA0FBFB0+ifxA0FBFB0
129 103 115 oveq12i ifxA0FBFB0+ifxA0FBFB0=ifxAif0FBFB00+ifxAif0FBFB00
130 max0add FBif0FBFB0+if0FBFB0=FB
131 5 130 syl φxAif0FBFB0+if0FBFB0=FB
132 iftrue xAifxAif0FBFB00=if0FBFB0
133 132 adantl φxAifxAif0FBFB00=if0FBFB0
134 iftrue xAifxAif0FBFB00=if0FBFB0
135 134 adantl φxAifxAif0FBFB00=if0FBFB0
136 133 135 oveq12d φxAifxAif0FBFB00+ifxAif0FBFB00=if0FBFB0+if0FBFB0
137 23 adantl φxAifxAFB0=FB
138 131 136 137 3eqtr4d φxAifxAif0FBFB00+ifxAif0FBFB00=ifxAFB0
139 138 ex φxAifxAif0FBFB00+ifxAif0FBFB00=ifxAFB0
140 00id 0+0=0
141 iffalse ¬xAifxAif0FBFB00=0
142 iffalse ¬xAifxAif0FBFB00=0
143 141 142 oveq12d ¬xAifxAif0FBFB00+ifxAif0FBFB00=0+0
144 140 143 21 3eqtr4a ¬xAifxAif0FBFB00+ifxAif0FBFB00=ifxAFB0
145 139 144 pm2.61d1 φifxAif0FBFB00+ifxAif0FBFB00=ifxAFB0
146 129 145 eqtrid φifxA0FBFB0+ifxA0FBFB0=ifxAFB0
147 146 mpteq2dv φxifxA0FBFB0+ifxA0FBFB0=xifxAFB0
148 128 147 eqtrd φxifxA0FBFB0+fxifxA0FBFB0=xifxAFB0
149 3 148 eqtr4id φG=xifxA0FBFB0+fxifxA0FBFB0
150 149 fveq2d φ2G=2xifxA0FBFB0+fxifxA0FBFB0
151 113 adantr φxAifxA0FBFB00+∞
152 103 141 eqtrid ¬xAifxA0FBFB0=0
153 20 152 syl φxAifxA0FBFB0=0
154 ibar xA0FBxA0FB
155 154 ifbid xAif0FBFB0=ifxA0FBFB0
156 155 mpteq2ia xAif0FBFB0=xAifxA0FBFB0
157 5 8 mbfpos φxAif0FBFB0MblFn
158 156 157 eqeltrrid φxAifxA0FBFB0MblFn
159 11 13 151 153 158 mbfss φxifxA0FBFB0MblFn
160 114 fmpttd φxifxA0FBFB0:0+∞
161 7 simp2d φ2xifxA0FBFB0
162 125 fmpttd φxifxA0FBFB0:0+∞
163 7 simp3d φ2xifxA0FBFB0
164 159 160 161 162 163 itg2addnc φ2xifxA0FBFB0+fxifxA0FBFB0=2xifxA0FBFB0+2xifxA0FBFB0
165 150 164 eqtrd φ2G=2xifxA0FBFB0+2xifxA0FBFB0
166 161 163 readdcld φ2xifxA0FBFB0+2xifxA0FBFB0
167 165 166 eqeltrd φ2G
168 100 167 jca φGMblFn2G