Metamath Proof Explorer


Theorem iccpartiltu

Description: If there is a partition, then all intermediate points are strictly less than the upper bound. (Contributed by AV, 12-Jul-2020)

Ref Expression
Hypotheses iccpartgtprec.m φM
iccpartgtprec.p φPRePartM
Assertion iccpartiltu φi1..^MPi<PM

Proof

Step Hyp Ref Expression
1 iccpartgtprec.m φM
2 iccpartgtprec.p φPRePartM
3 ral0 iPi<P1
4 oveq2 M=11..^M=1..^1
5 fzo0 1..^1=
6 4 5 eqtrdi M=11..^M=
7 fveq2 M=1PM=P1
8 7 breq2d M=1Pi<PMPi<P1
9 6 8 raleqbidv M=1i1..^MPi<PMiPi<P1
10 3 9 mpbiri M=1i1..^MPi<PM
11 10 2a1d M=1φMi1..^MPi<PM
12 simpr φ¬M=1MM
13 2 adantr φ¬M=1PRePartM
14 13 adantr φ¬M=1MPRePartM
15 nnnn0 MM0
16 nn0fz0 M0M0M
17 15 16 sylib MM0M
18 17 adantl φ¬M=1MM0M
19 12 14 18 iccpartxr φ¬M=1MPM*
20 elxr PM*PMPM=+∞PM=−∞
21 elfzoelz i1..^Mi
22 21 ad2antll PMφ¬M=1Mi1..^Mi
23 elfzo2 i1..^Mi1Mi<M
24 eluzelz i1i
25 24 peano2zd i1i+1
26 25 3ad2ant1 i1Mi<Mi+1
27 simp2 i1Mi<MM
28 zltp1le iMi<Mi+1M
29 24 28 sylan i1Mi<Mi+1M
30 29 biimp3a i1Mi<Mi+1M
31 eluz2 Mi+1i+1Mi+1M
32 26 27 30 31 syl3anbrc i1Mi<MMi+1
33 23 32 sylbi i1..^MMi+1
34 33 ad2antll PMφ¬M=1Mi1..^MMi+1
35 fveq2 k=MPk=PM
36 35 eqcomd k=MPM=Pk
37 36 eleq1d k=MPMPk
38 37 biimpcd PMk=MPk
39 38 adantr PMφ¬M=1Mi1..^Mk=MPk
40 39 adantr PMφ¬M=1Mi1..^MkiMk=MPk
41 40 com12 k=MPMφ¬M=1Mi1..^MkiMPk
42 12 adantr φ¬M=1Mi1..^MM
43 42 adantl PMφ¬M=1Mi1..^MM
44 43 adantr PMφ¬M=1Mi1..^MkiMM
45 44 adantl ¬k=MPMφ¬M=1Mi1..^MkiMM
46 14 adantr φ¬M=1Mi1..^MPRePartM
47 46 adantl PMφ¬M=1Mi1..^MPRePartM
48 47 adantr PMφ¬M=1Mi1..^MkiMPRePartM
49 48 adantl ¬k=MPMφ¬M=1Mi1..^MkiMPRePartM
50 elfz2 kiMiMkikkM
51 eluz2 i11i1i
52 1red ik1
53 zre ii
54 53 adantr iki
55 zre kk
56 55 adantl ikk
57 letr 1ik1iik1k
58 52 54 56 57 syl3anc ik1iik1k
59 58 expcomd ikik1i1k
60 59 adantrd ikikkM1i1k
61 60 3adant2 iMkikkM1i1k
62 61 imp iMkikkM1i1k
63 62 com12 1iiMkikkM1k
64 63 3ad2ant3 1i1iiMkikkM1k
65 51 64 sylbi i1iMkikkM1k
66 65 3ad2ant1 i1Mi<MiMkikkM1k
67 23 66 sylbi i1..^MiMkikkM1k
68 50 67 biimtrid i1..^MkiM1k
69 68 imp i1..^MkiM1k
70 69 3adant3 i1..^MkiM¬k=M1k
71 zre MM
72 71 55 anim12ci MkkM
73 72 3adant1 iMkkM
74 ltlen kMk<MkMMk
75 73 74 syl iMkk<MkMMk
76 nesym Mk¬k=M
77 76 anbi2i kMMkkM¬k=M
78 75 77 bitr2di iMkkM¬k=Mk<M
79 78 biimpd iMkkM¬k=Mk<M
80 79 expd iMkkM¬k=Mk<M
81 80 adantld iMkikkM¬k=Mk<M
82 81 imp iMkikkM¬k=Mk<M
83 50 82 sylbi kiM¬k=Mk<M
84 83 imp kiM¬k=Mk<M
85 84 3adant1 i1..^MkiM¬k=Mk<M
86 70 85 jca i1..^MkiM¬k=M1kk<M
87 elfzelz kiMk
88 1zzd kiM1
89 elfzel2 kiMM
90 87 88 89 3jca kiMk1M
91 90 3ad2ant2 i1..^MkiM¬k=Mk1M
92 elfzo k1Mk1..^M1kk<M
93 91 92 syl i1..^MkiM¬k=Mk1..^M1kk<M
94 86 93 mpbird i1..^MkiM¬k=Mk1..^M
95 94 3exp i1..^MkiM¬k=Mk1..^M
96 95 ad2antll PMφ¬M=1Mi1..^MkiM¬k=Mk1..^M
97 96 imp PMφ¬M=1Mi1..^MkiM¬k=Mk1..^M
98 97 impcom ¬k=MPMφ¬M=1Mi1..^MkiMk1..^M
99 45 49 98 iccpartipre ¬k=MPMφ¬M=1Mi1..^MkiMPk
100 99 ex ¬k=MPMφ¬M=1Mi1..^MkiMPk
101 41 100 pm2.61i PMφ¬M=1Mi1..^MkiMPk
102 43 adantr PMφ¬M=1Mi1..^MkiM1M
103 47 adantr PMφ¬M=1Mi1..^MkiM1PRePartM
104 1eluzge0 10
105 fzoss1 101..^M0..^M
106 104 105 mp1i i1..^MkiM11..^M0..^M
107 elfzoel2 i1..^MM
108 fzoval Mi..^M=iM1
109 107 108 syl i1..^Mi..^M=iM1
110 109 eqcomd i1..^MiM1=i..^M
111 110 eleq2d i1..^MkiM1ki..^M
112 elfzouz i1..^Mi1
113 fzoss1 i1i..^M1..^M
114 112 113 syl i1..^Mi..^M1..^M
115 114 sseld i1..^Mki..^Mk1..^M
116 111 115 sylbid i1..^MkiM1k1..^M
117 116 imp i1..^MkiM1k1..^M
118 106 117 sseldd i1..^MkiM1k0..^M
119 118 ex i1..^MkiM1k0..^M
120 119 ad2antll PMφ¬M=1Mi1..^MkiM1k0..^M
121 120 imp PMφ¬M=1Mi1..^MkiM1k0..^M
122 iccpartimp MPRePartMk0..^MP*0MPk<Pk+1
123 102 103 121 122 syl3anc PMφ¬M=1Mi1..^MkiM1P*0MPk<Pk+1
124 123 simprd PMφ¬M=1Mi1..^MkiM1Pk<Pk+1
125 22 34 101 124 smonoord PMφ¬M=1Mi1..^MPi<PM
126 125 ex PMφ¬M=1Mi1..^MPi<PM
127 simpr φ¬M=1Mi1..^Mi1..^M
128 42 46 127 iccpartipre φ¬M=1Mi1..^MPi
129 ltpnf PiPi<+∞
130 128 129 syl φ¬M=1Mi1..^MPi<+∞
131 breq2 PM=+∞Pi<PMPi<+∞
132 130 131 imbitrrid PM=+∞φ¬M=1Mi1..^MPi<PM
133 42 adantl PM=−∞φ¬M=1Mi1..^MM
134 46 adantl PM=−∞φ¬M=1Mi1..^MPRePartM
135 elfzofz i1..^Mi1M
136 135 ad2antll PM=−∞φ¬M=1Mi1..^Mi1M
137 elfzubelfz i1MM1M
138 136 137 syl PM=−∞φ¬M=1Mi1..^MM1M
139 133 134 138 iccpartgtprec PM=−∞φ¬M=1Mi1..^MPM1<PM
140 breq2 −∞=PMPM1<−∞PM1<PM
141 140 eqcoms PM=−∞PM1<−∞PM1<PM
142 141 adantr PM=−∞φ¬M=1Mi1..^MPM1<−∞PM1<PM
143 139 142 mpbird PM=−∞φ¬M=1Mi1..^MPM1<−∞
144 15 adantl φ¬M=1MM0
145 144 adantr φ¬M=1Mi1..^MM0
146 nnne0 MM0
147 146 adantl φ¬M=1MM0
148 df-ne M1¬M=1
149 148 biimpri ¬M=1M1
150 149 adantl φ¬M=1M1
151 150 adantr φ¬M=1MM1
152 144 147 151 3jca φ¬M=1MM0M0M1
153 152 adantr φ¬M=1Mi1..^MM0M0M1
154 nn0n0n1ge2 M0M0M12M
155 153 154 syl φ¬M=1Mi1..^M2M
156 145 155 jca φ¬M=1Mi1..^MM02M
157 156 adantl PM=−∞φ¬M=1Mi1..^MM02M
158 ige2m1fz M02MM10M
159 157 158 syl PM=−∞φ¬M=1Mi1..^MM10M
160 133 134 159 iccpartxr PM=−∞φ¬M=1Mi1..^MPM1*
161 nltmnf PM1*¬PM1<−∞
162 160 161 syl PM=−∞φ¬M=1Mi1..^M¬PM1<−∞
163 143 162 pm2.21dd PM=−∞φ¬M=1Mi1..^MPi<PM
164 163 ex PM=−∞φ¬M=1Mi1..^MPi<PM
165 126 132 164 3jaoi PMPM=+∞PM=−∞φ¬M=1Mi1..^MPi<PM
166 165 impl PMPM=+∞PM=−∞φ¬M=1Mi1..^MPi<PM
167 166 ralrimiva PMPM=+∞PM=−∞φ¬M=1Mi1..^MPi<PM
168 167 ex PMPM=+∞PM=−∞φ¬M=1Mi1..^MPi<PM
169 20 168 sylbi PM*φ¬M=1Mi1..^MPi<PM
170 19 169 mpcom φ¬M=1Mi1..^MPi<PM
171 170 ex φ¬M=1Mi1..^MPi<PM
172 171 expcom ¬M=1φMi1..^MPi<PM
173 11 172 pm2.61i φMi1..^MPi<PM
174 1 173 mpd φi1..^MPi<PM