Metamath Proof Explorer


Theorem idomrootle

Description: No element of an integral domain can have more than N N -th roots. (Contributed by Stefan O'Rear, 11-Sep-2015)

Ref Expression
Hypotheses idomrootle.b B = Base R
idomrootle.e × ˙ = mulGrp R
Assertion idomrootle R IDomn X B N y B | N × ˙ y = X N

Proof

Step Hyp Ref Expression
1 idomrootle.b B = Base R
2 idomrootle.e × ˙ = mulGrp R
3 eqid Poly 1 R = Poly 1 R
4 eqid Base Poly 1 R = Base Poly 1 R
5 eqid deg 1 R = deg 1 R
6 eqid eval 1 R = eval 1 R
7 eqid 0 R = 0 R
8 eqid 0 Poly 1 R = 0 Poly 1 R
9 simp1 R IDomn X B N R IDomn
10 isidom R IDomn R CRing R Domn
11 10 simplbi R IDomn R CRing
12 9 11 syl R IDomn X B N R CRing
13 crngring R CRing R Ring
14 12 13 syl R IDomn X B N R Ring
15 3 ply1ring R Ring Poly 1 R Ring
16 14 15 syl R IDomn X B N Poly 1 R Ring
17 ringgrp Poly 1 R Ring Poly 1 R Grp
18 16 17 syl R IDomn X B N Poly 1 R Grp
19 eqid mulGrp Poly 1 R = mulGrp Poly 1 R
20 19 ringmgp Poly 1 R Ring mulGrp Poly 1 R Mnd
21 16 20 syl R IDomn X B N mulGrp Poly 1 R Mnd
22 mndmgm mulGrp Poly 1 R Mnd mulGrp Poly 1 R Mgm
23 21 22 syl R IDomn X B N mulGrp Poly 1 R Mgm
24 simp3 R IDomn X B N N
25 eqid var 1 R = var 1 R
26 25 3 4 vr1cl R Ring var 1 R Base Poly 1 R
27 14 26 syl R IDomn X B N var 1 R Base Poly 1 R
28 19 4 mgpbas Base Poly 1 R = Base mulGrp Poly 1 R
29 eqid mulGrp Poly 1 R = mulGrp Poly 1 R
30 28 29 mulgnncl mulGrp Poly 1 R Mgm N var 1 R Base Poly 1 R N mulGrp Poly 1 R var 1 R Base Poly 1 R
31 23 24 27 30 syl3anc R IDomn X B N N mulGrp Poly 1 R var 1 R Base Poly 1 R
32 eqid algSc Poly 1 R = algSc Poly 1 R
33 3 32 1 4 ply1sclf R Ring algSc Poly 1 R : B Base Poly 1 R
34 14 33 syl R IDomn X B N algSc Poly 1 R : B Base Poly 1 R
35 simp2 R IDomn X B N X B
36 34 35 ffvelrnd R IDomn X B N algSc Poly 1 R X Base Poly 1 R
37 eqid - Poly 1 R = - Poly 1 R
38 4 37 grpsubcl Poly 1 R Grp N mulGrp Poly 1 R var 1 R Base Poly 1 R algSc Poly 1 R X Base Poly 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Base Poly 1 R
39 18 31 36 38 syl3anc R IDomn X B N N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Base Poly 1 R
40 5 3 4 deg1xrcl algSc Poly 1 R X Base Poly 1 R deg 1 R algSc Poly 1 R X *
41 36 40 syl R IDomn X B N deg 1 R algSc Poly 1 R X *
42 0xr 0 *
43 42 a1i R IDomn X B N 0 *
44 nnre N N
45 44 rexrd N N *
46 45 3ad2ant3 R IDomn X B N N *
47 5 3 1 32 deg1sclle R Ring X B deg 1 R algSc Poly 1 R X 0
48 14 35 47 syl2anc R IDomn X B N deg 1 R algSc Poly 1 R X 0
49 nngt0 N 0 < N
50 49 3ad2ant3 R IDomn X B N 0 < N
51 41 43 46 48 50 xrlelttrd R IDomn X B N deg 1 R algSc Poly 1 R X < N
52 10 simprbi R IDomn R Domn
53 domnnzr R Domn R NzRing
54 52 53 syl R IDomn R NzRing
55 9 54 syl R IDomn X B N R NzRing
56 nnnn0 N N 0
57 56 3ad2ant3 R IDomn X B N N 0
58 5 3 25 19 29 deg1pw R NzRing N 0 deg 1 R N mulGrp Poly 1 R var 1 R = N
59 55 57 58 syl2anc R IDomn X B N deg 1 R N mulGrp Poly 1 R var 1 R = N
60 51 59 breqtrrd R IDomn X B N deg 1 R algSc Poly 1 R X < deg 1 R N mulGrp Poly 1 R var 1 R
61 3 5 14 4 37 31 36 60 deg1sub R IDomn X B N deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X = deg 1 R N mulGrp Poly 1 R var 1 R
62 61 59 eqtrd R IDomn X B N deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X = N
63 62 57 eqeltrd R IDomn X B N deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0
64 5 3 8 4 deg1nn0clb R Ring N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Base Poly 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0 Poly 1 R deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0
65 14 39 64 syl2anc R IDomn X B N N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0 Poly 1 R deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0
66 63 65 mpbird R IDomn X B N N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X 0 Poly 1 R
67 3 4 5 6 7 8 9 39 66 fta1g R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X -1 0 R deg 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X
68 eqid R 𝑠 B = R 𝑠 B
69 eqid Base R 𝑠 B = Base R 𝑠 B
70 1 fvexi B V
71 70 a1i R IDomn X B N B V
72 6 3 68 1 evl1rhm R CRing eval 1 R Poly 1 R RingHom R 𝑠 B
73 12 72 syl R IDomn X B N eval 1 R Poly 1 R RingHom R 𝑠 B
74 4 69 rhmf eval 1 R Poly 1 R RingHom R 𝑠 B eval 1 R : Base Poly 1 R Base R 𝑠 B
75 73 74 syl R IDomn X B N eval 1 R : Base Poly 1 R Base R 𝑠 B
76 75 39 ffvelrnd R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Base R 𝑠 B
77 68 1 69 9 71 76 pwselbas R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X : B B
78 77 ffnd R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Fn B
79 fniniseg2 eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Fn B eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X -1 0 R = y B | eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = 0 R
80 78 79 syl R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X -1 0 R = y B | eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = 0 R
81 12 adantr R IDomn X B N y B R CRing
82 simpr R IDomn X B N y B y B
83 6 25 1 3 4 81 82 evl1vard R IDomn X B N y B var 1 R Base Poly 1 R eval 1 R var 1 R y = y
84 simpl3 R IDomn X B N y B N
85 84 56 syl R IDomn X B N y B N 0
86 6 3 1 4 81 82 83 29 2 85 evl1expd R IDomn X B N y B N mulGrp Poly 1 R var 1 R Base Poly 1 R eval 1 R N mulGrp Poly 1 R var 1 R y = N × ˙ y
87 simpl2 R IDomn X B N y B X B
88 6 3 1 32 4 81 87 82 evl1scad R IDomn X B N y B algSc Poly 1 R X Base Poly 1 R eval 1 R algSc Poly 1 R X y = X
89 eqid - R = - R
90 6 3 1 4 81 82 86 88 37 89 evl1subd R IDomn X B N y B N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X Base Poly 1 R eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = N × ˙ y - R X
91 90 simprd R IDomn X B N y B eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = N × ˙ y - R X
92 91 eqeq1d R IDomn X B N y B eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = 0 R N × ˙ y - R X = 0 R
93 ringgrp R Ring R Grp
94 14 93 syl R IDomn X B N R Grp
95 94 adantr R IDomn X B N y B R Grp
96 eqid mulGrp R = mulGrp R
97 96 ringmgp R Ring mulGrp R Mnd
98 14 97 syl R IDomn X B N mulGrp R Mnd
99 98 adantr R IDomn X B N y B mulGrp R Mnd
100 mndmgm mulGrp R Mnd mulGrp R Mgm
101 99 100 syl R IDomn X B N y B mulGrp R Mgm
102 96 1 mgpbas B = Base mulGrp R
103 102 2 mulgnncl mulGrp R Mgm N y B N × ˙ y B
104 101 84 82 103 syl3anc R IDomn X B N y B N × ˙ y B
105 1 7 89 grpsubeq0 R Grp N × ˙ y B X B N × ˙ y - R X = 0 R N × ˙ y = X
106 95 104 87 105 syl3anc R IDomn X B N y B N × ˙ y - R X = 0 R N × ˙ y = X
107 92 106 bitrd R IDomn X B N y B eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = 0 R N × ˙ y = X
108 107 rabbidva R IDomn X B N y B | eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X y = 0 R = y B | N × ˙ y = X
109 80 108 eqtrd R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X -1 0 R = y B | N × ˙ y = X
110 109 fveq2d R IDomn X B N eval 1 R N mulGrp Poly 1 R var 1 R - Poly 1 R algSc Poly 1 R X -1 0 R = y B | N × ˙ y = X
111 67 110 62 3brtr3d R IDomn X B N y B | N × ˙ y = X N