Metamath Proof Explorer


Theorem ismrer1

Description: An isometry between RR and RR ^ 1 . (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses ismrer1.1 R=abs2
ismrer1.2 F=xA×x
Assertion ismrer1 AVFRIsmtynA

Proof

Step Hyp Ref Expression
1 ismrer1.1 R=abs2
2 ismrer1.2 F=xA×x
3 sneq y=Ay=A
4 3 xpeq1d y=Ay×x=A×x
5 4 mpteq2dv y=Axy×x=xA×x
6 5 2 eqtr4di y=Axy×x=F
7 6 f1oeq1d y=Axy×x:1-1 ontoyF:1-1 ontoy
8 3 oveq2d y=Ay=A
9 f1oeq3 y=AF:1-1 ontoyF:1-1 ontoA
10 8 9 syl y=AF:1-1 ontoyF:1-1 ontoA
11 7 10 bitrd y=Axy×x:1-1 ontoyF:1-1 ontoA
12 eqid y=y
13 reex V
14 vex yV
15 eqid xy×x=xy×x
16 12 13 14 15 mapsnf1o3 xy×x:1-1 ontoy
17 11 16 vtoclg AVF:1-1 ontoA
18 sneq x=yx=y
19 18 xpeq2d x=yA×x=A×y
20 snex AV
21 snex xV
22 20 21 xpex A×xV
23 19 2 22 fvmpt3i yFy=A×y
24 23 fveq1d yFyA=A×yA
25 24 adantr yzFyA=A×yA
26 snidg AVAA
27 fvconst2g yVAAA×yA=y
28 14 26 27 sylancr AVA×yA=y
29 25 28 sylan9eqr AVyzFyA=y
30 sneq x=zx=z
31 30 xpeq2d x=zA×x=A×z
32 31 2 22 fvmpt3i zFz=A×z
33 32 fveq1d zFzA=A×zA
34 33 adantl yzFzA=A×zA
35 vex zV
36 fvconst2g zVAAA×zA=z
37 35 26 36 sylancr AVA×zA=z
38 34 37 sylan9eqr AVyzFzA=z
39 29 38 oveq12d AVyzFyAFzA=yz
40 39 oveq1d AVyzFyAFzA2=yz2
41 resubcl yzyz
42 41 adantl AVyzyz
43 absresq yzyz2=yz2
44 42 43 syl AVyzyz2=yz2
45 40 44 eqtr4d AVyzFyAFzA2=yz2
46 42 recnd AVyzyz
47 46 abscld AVyzyz
48 47 recnd AVyzyz
49 48 sqcld AVyzyz2
50 45 49 eqeltrd AVyzFyAFzA2
51 fveq2 k=AFyk=FyA
52 fveq2 k=AFzk=FzA
53 51 52 oveq12d k=AFykFzk=FyAFzA
54 53 oveq1d k=AFykFzk2=FyAFzA2
55 54 sumsn AVFyAFzA2kAFykFzk2=FyAFzA2
56 50 55 syldan AVyzkAFykFzk2=FyAFzA2
57 56 45 eqtrd AVyzkAFykFzk2=yz2
58 57 fveq2d AVyzkAFykFzk2=yz2
59 46 absge0d AVyz0yz
60 47 59 sqrtsqd AVyzyz2=yz
61 58 60 eqtrd AVyzkAFykFzk2=yz
62 f1of F:1-1 ontoAF:A
63 17 62 syl AVF:A
64 63 ffvelcdmda AVyFyA
65 63 ffvelcdmda AVzFzA
66 64 65 anim12dan AVyzFyAFzA
67 snfi AFin
68 eqid A=A
69 68 rrnmval AFinFyAFzAFynAFz=kAFykFzk2
70 67 69 mp3an1 FyAFzAFynAFz=kAFykFzk2
71 66 70 syl AVyzFynAFz=kAFykFzk2
72 1 remetdval yzyRz=yz
73 72 adantl AVyzyRz=yz
74 61 71 73 3eqtr4rd AVyzyRz=FynAFz
75 74 ralrimivva AVyzyRz=FynAFz
76 1 rexmet R∞Met
77 68 rrnmet AFinnAMetA
78 metxmet nAMetAnA∞MetA
79 67 77 78 mp2b nA∞MetA
80 isismty R∞MetnA∞MetAFRIsmtynAF:1-1 ontoAyzyRz=FynAFz
81 76 79 80 mp2an FRIsmtynAF:1-1 ontoAyzyRz=FynAFz
82 17 75 81 sylanbrc AVFRIsmtynA