Metamath Proof Explorer


Theorem isufil2

Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion isufil2 FUFilXFFilXfFilXFfF=f

Proof

Step Hyp Ref Expression
1 ufilfil FUFilXFFilX
2 ufilmax FUFilXfFilXFfF=f
3 2 3expia FUFilXfFilXFfF=f
4 3 ralrimiva FUFilXfFilXFfF=f
5 1 4 jca FUFilXFFilXfFilXFfF=f
6 simpl FFilXfFilXFfF=fFFilX
7 velpw x𝒫XxX
8 simpll FFilXxXyFyxFFilX
9 vsnex xV
10 unexg FFilXxVFxV
11 8 9 10 sylancl FFilXxXyFyxFxV
12 ssfii FxVFxfiFx
13 11 12 syl FFilXxXyFyxFxfiFx
14 filsspw FFilXF𝒫X
15 14 ad2antrr FFilXxXyFyxF𝒫X
16 7 biimpri xXx𝒫X
17 16 ad2antlr FFilXxXyFyxx𝒫X
18 17 snssd FFilXxXyFyxx𝒫X
19 15 18 unssd FFilXxXyFyxFx𝒫X
20 ssun2 xFx
21 vex xV
22 21 snnz x
23 ssn0 xFxxFx
24 20 22 23 mp2an Fx
25 24 a1i FFilXxXyFyxFx
26 simpr FFilXxXyFyxyFyx
27 ineq2 f=xyf=yx
28 27 neeq1d f=xyfyx
29 21 28 ralsn fxyfyx
30 29 ralbii yFfxyfyFyx
31 26 30 sylibr FFilXxXyFyxyFfxyf
32 filfbas FFilXFfBasX
33 32 ad2antrr FFilXxXyFyxFfBasX
34 simplr FFilXxXyFyxxX
35 inss2 Xxx
36 filtop FFilXXF
37 36 adantr FFilXxXXF
38 ineq1 y=Xyx=Xx
39 38 neeq1d y=XyxXx
40 39 rspcva XFyFyxXx
41 37 40 sylan FFilXxXyFyxXx
42 ssn0 XxxXxx
43 35 41 42 sylancr FFilXxXyFyxx
44 36 ad2antrr FFilXxXyFyxXF
45 snfbas xXxXFxfBasX
46 34 43 44 45 syl3anc FFilXxXyFyxxfBasX
47 fbunfip FfBasXxfBasX¬fiFxyFfxyf
48 33 46 47 syl2anc FFilXxXyFyx¬fiFxyFfxyf
49 31 48 mpbird FFilXxXyFyx¬fiFx
50 fsubbas XFfiFxfBasXFx𝒫XFx¬fiFx
51 44 50 syl FFilXxXyFyxfiFxfBasXFx𝒫XFx¬fiFx
52 19 25 49 51 mpbir3and FFilXxXyFyxfiFxfBasX
53 ssfg fiFxfBasXfiFxXfilGenfiFx
54 52 53 syl FFilXxXyFyxfiFxXfilGenfiFx
55 13 54 sstrd FFilXxXyFyxFxXfilGenfiFx
56 55 unssad FFilXxXyFyxFXfilGenfiFx
57 fgcl fiFxfBasXXfilGenfiFxFilX
58 sseq2 f=XfilGenfiFxFfFXfilGenfiFx
59 eqeq2 f=XfilGenfiFxF=fF=XfilGenfiFx
60 58 59 imbi12d f=XfilGenfiFxFfF=fFXfilGenfiFxF=XfilGenfiFx
61 60 rspcv XfilGenfiFxFilXfFilXFfF=fFXfilGenfiFxF=XfilGenfiFx
62 52 57 61 3syl FFilXxXyFyxfFilXFfF=fFXfilGenfiFxF=XfilGenfiFx
63 56 62 mpid FFilXxXyFyxfFilXFfF=fF=XfilGenfiFx
64 vsnid xx
65 20 64 sselii xFx
66 65 a1i FFilXxXyFyxxFx
67 55 66 sseldd FFilXxXyFyxxXfilGenfiFx
68 eleq2 F=XfilGenfiFxxFxXfilGenfiFx
69 67 68 syl5ibrcom FFilXxXyFyxF=XfilGenfiFxxF
70 63 69 syld FFilXxXyFyxfFilXFfF=fxF
71 70 impancom FFilXxXfFilXFfF=fyFyxxF
72 71 an32s FFilXfFilXFfF=fxXyFyxxF
73 72 con3d FFilXfFilXFfF=fxX¬xF¬yFyx
74 rexnal yF¬yx¬yFyx
75 nne ¬yxyx=
76 filelss FFilXyFyX
77 reldisj yXyx=yXx
78 76 77 syl FFilXyFyx=yXx
79 difss XxX
80 filss FFilXyFXxXyXxXxF
81 80 3exp2 FFilXyFXxXyXxXxF
82 79 81 mpii FFilXyFyXxXxF
83 82 imp FFilXyFyXxXxF
84 78 83 sylbid FFilXyFyx=XxF
85 75 84 biimtrid FFilXyF¬yxXxF
86 85 rexlimdva FFilXyF¬yxXxF
87 74 86 biimtrrid FFilX¬yFyxXxF
88 87 ad2antrr FFilXfFilXFfF=fxX¬yFyxXxF
89 73 88 syld FFilXfFilXFfF=fxX¬xFXxF
90 89 orrd FFilXfFilXFfF=fxXxFXxF
91 7 90 sylan2b FFilXfFilXFfF=fx𝒫XxFXxF
92 91 ralrimiva FFilXfFilXFfF=fx𝒫XxFXxF
93 isufil FUFilXFFilXx𝒫XxFXxF
94 6 92 93 sylanbrc FFilXfFilXFfF=fFUFilX
95 5 94 impbii FUFilXFFilXfFilXFfF=f