Metamath Proof Explorer


Theorem itgaddnclem2

Description: Lemma for itgaddnc ; cf. itgaddlem2 . (Contributed by Brendan Leahy, 10-Nov-2017) (Revised by Brendan Leahy, 3-Apr-2018)

Ref Expression
Hypotheses ibladdnc.1 φxABV
ibladdnc.2 φxAB𝐿1
ibladdnc.3 φxACV
ibladdnc.4 φxAC𝐿1
ibladdnc.m φxAB+CMblFn
itgaddnclem.1 φxAB
itgaddnclem.2 φxAC
Assertion itgaddnclem2 φAB+Cdx=ABdx+ACdx

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φxABV
2 ibladdnc.2 φxAB𝐿1
3 ibladdnc.3 φxACV
4 ibladdnc.4 φxAC𝐿1
5 ibladdnc.m φxAB+CMblFn
6 itgaddnclem.1 φxAB
7 itgaddnclem.2 φxAC
8 max0sub Bif0BB0if0BB0=B
9 6 8 syl φxAif0BB0if0BB0=B
10 max0sub Cif0CC0if0CC0=C
11 7 10 syl φxAif0CC0if0CC0=C
12 9 11 oveq12d φxAif0BB0if0BB0+if0CC0-if0CC0=B+C
13 0re 0
14 ifcl B0if0BB0
15 6 13 14 sylancl φxAif0BB0
16 15 recnd φxAif0BB0
17 ifcl C0if0CC0
18 7 13 17 sylancl φxAif0CC0
19 18 recnd φxAif0CC0
20 6 renegcld φxAB
21 ifcl B0if0BB0
22 20 13 21 sylancl φxAif0BB0
23 22 recnd φxAif0BB0
24 7 renegcld φxAC
25 ifcl C0if0CC0
26 24 13 25 sylancl φxAif0CC0
27 26 recnd φxAif0CC0
28 16 19 23 27 addsub4d φxAif0BB0+if0CC0-if0BB0+if0CC0=if0BB0if0BB0+if0CC0-if0CC0
29 6 7 readdcld φxAB+C
30 max0sub B+Cif0B+CB+C0if0B+CB+C0=B+C
31 29 30 syl φxAif0B+CB+C0if0B+CB+C0=B+C
32 12 28 31 3eqtr4rd φxAif0B+CB+C0if0B+CB+C0=if0BB0+if0CC0-if0BB0+if0CC0
33 29 renegcld φxAB+C
34 ifcl B+C0if0B+CB+C0
35 33 13 34 sylancl φxAif0B+CB+C0
36 35 recnd φxAif0B+CB+C0
37 15 18 readdcld φxAif0BB0+if0CC0
38 37 recnd φxAif0BB0+if0CC0
39 ifcl B+C0if0B+CB+C0
40 29 13 39 sylancl φxAif0B+CB+C0
41 40 recnd φxAif0B+CB+C0
42 22 26 readdcld φxAif0BB0+if0CC0
43 42 recnd φxAif0BB0+if0CC0
44 36 38 41 43 addsubeq4d φxAif0B+CB+C0+if0BB0+if0CC0=if0B+CB+C0+if0BB0+if0CC0if0B+CB+C0if0B+CB+C0=if0BB0+if0CC0-if0BB0+if0CC0
45 32 44 mpbird φxAif0B+CB+C0+if0BB0+if0CC0=if0B+CB+C0+if0BB0+if0CC0
46 45 itgeq2dv φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0+if0BB0+if0CC0dx
47 6 2 7 4 5 ibladdnc φxAB+C𝐿1
48 29 iblre φxAB+C𝐿1xAif0B+CB+C0𝐿1xAif0B+CB+C0𝐿1
49 47 48 mpbid φxAif0B+CB+C0𝐿1xAif0B+CB+C0𝐿1
50 49 simprd φxAif0B+CB+C0𝐿1
51 6 iblre φxAB𝐿1xAif0BB0𝐿1xAif0BB0𝐿1
52 2 51 mpbid φxAif0BB0𝐿1xAif0BB0𝐿1
53 52 simpld φxAif0BB0𝐿1
54 7 iblre φxAC𝐿1xAif0CC0𝐿1xAif0CC0𝐿1
55 4 54 mpbid φxAif0CC0𝐿1xAif0CC0𝐿1
56 55 simpld φxAif0CC0𝐿1
57 iblmbf xAB𝐿1xABMblFn
58 2 57 syl φxABMblFn
59 iblmbf xAC𝐿1xACMblFn
60 4 59 syl φxACMblFn
61 58 6 60 7 5 mbfposadd φxAif0BB0+if0CC0MblFn
62 15 53 18 56 61 ibladdnc φxAif0BB0+if0CC0𝐿1
63 max1 0B0if0BB0
64 13 6 63 sylancr φxA0if0BB0
65 max1 0C0if0CC0
66 13 7 65 sylancr φxA0if0CC0
67 15 18 64 66 addge0d φxA0if0BB0+if0CC0
68 67 iftrued φxAif0if0BB0+if0CC0if0BB0+if0CC00=if0BB0+if0CC0
69 68 oveq2d φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00=if0B+CB+C0+if0BB0+if0CC0
70 69 mpteq2dva φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00=xAif0B+CB+C0+if0BB0+if0CC0
71 29 5 mbfneg φxAB+CMblFn
72 6 recnd φxAB
73 7 recnd φxAC
74 72 73 negdid φxAB+C=-B+C
75 74 oveq1d φxAB+C+if0BB0+if0CC0=B+C+if0BB0+if0CC0
76 20 recnd φxAB
77 24 recnd φxAC
78 76 77 16 19 add4d φxAB+C+if0BB0+if0CC0=B+if0BB0+C+if0CC0
79 negeq B=0B=0
80 neg0 0=0
81 79 80 eqtrdi B=0B=0
82 0le0 00
83 82 81 breqtrrid B=00B
84 83 iftrued B=0if0BB0=B
85 id B=0B=0
86 82 85 breqtrrid B=00B
87 86 iftrued B=0if0BB0=B
88 87 85 eqtrd B=0if0BB0=0
89 81 88 oveq12d B=0-B+if0BB0=0+0
90 00id 0+0=0
91 89 90 eqtrdi B=0-B+if0BB0=0
92 81 84 91 3eqtr4rd B=0-B+if0BB0=if0BB0
93 92 adantl φxAB=0-B+if0BB0=if0BB0
94 ovif2 -B+if0BB0=if0B-B+B-B+0
95 72 negne0bd φxAB0B0
96 95 biimpa φxAB0B0
97 6 le0neg2d φxA0BB0
98 leloe B0B0B<0B=0
99 20 13 98 sylancl φxAB0B<0B=0
100 97 99 bitrd φxA0BB<0B=0
101 df-ne B0¬B=0
102 biorf ¬B=0B<0B=0B<0
103 101 102 sylbi B0B<0B=0B<0
104 orcom B=0B<0B<0B=0
105 103 104 bitr2di B0B<0B=0B<0
106 100 105 sylan9bb φxAB00BB<0
107 96 106 syldan φxAB00BB<0
108 ltnle B0B<0¬0B
109 20 13 108 sylancl φxAB<0¬0B
110 109 adantr φxAB0B<0¬0B
111 107 110 bitrd φxAB00B¬0B
112 76 72 addcomd φxA-B+B=B+B
113 72 negidd φxAB+B=0
114 112 113 eqtrd φxA-B+B=0
115 114 adantr φxAB0-B+B=0
116 76 addridd φxA-B+0=B
117 116 adantr φxAB0-B+0=B
118 111 115 117 ifbieq12d φxAB0if0B-B+B-B+0=if¬0B0B
119 ifnot if¬0B0B=if0BB0
120 118 119 eqtrdi φxAB0if0B-B+B-B+0=if0BB0
121 94 120 eqtrid φxAB0-B+if0BB0=if0BB0
122 93 121 pm2.61dane φxA-B+if0BB0=if0BB0
123 negeq C=0C=0
124 123 80 eqtrdi C=0C=0
125 82 124 breqtrrid C=00C
126 125 iftrued C=0if0CC0=C
127 id C=0C=0
128 82 127 breqtrrid C=00C
129 128 iftrued C=0if0CC0=C
130 129 127 eqtrd C=0if0CC0=0
131 124 130 oveq12d C=0-C+if0CC0=0+0
132 131 90 eqtrdi C=0-C+if0CC0=0
133 124 126 132 3eqtr4rd C=0-C+if0CC0=if0CC0
134 133 adantl φxAC=0-C+if0CC0=if0CC0
135 ovif2 -C+if0CC0=if0C-C+C-C+0
136 73 negne0bd φxAC0C0
137 136 biimpa φxAC0C0
138 7 le0neg2d φxA0CC0
139 leloe C0C0C<0C=0
140 24 13 139 sylancl φxAC0C<0C=0
141 138 140 bitrd φxA0CC<0C=0
142 df-ne C0¬C=0
143 biorf ¬C=0C<0C=0C<0
144 142 143 sylbi C0C<0C=0C<0
145 orcom C=0C<0C<0C=0
146 144 145 bitr2di C0C<0C=0C<0
147 141 146 sylan9bb φxAC00CC<0
148 137 147 syldan φxAC00CC<0
149 ltnle C0C<0¬0C
150 24 13 149 sylancl φxAC<0¬0C
151 150 adantr φxAC0C<0¬0C
152 148 151 bitrd φxAC00C¬0C
153 77 73 addcomd φxA-C+C=C+C
154 73 negidd φxAC+C=0
155 153 154 eqtrd φxA-C+C=0
156 155 adantr φxAC0-C+C=0
157 77 addridd φxA-C+0=C
158 157 adantr φxAC0-C+0=C
159 152 156 158 ifbieq12d φxAC0if0C-C+C-C+0=if¬0C0C
160 ifnot if¬0C0C=if0CC0
161 159 160 eqtrdi φxAC0if0C-C+C-C+0=if0CC0
162 135 161 eqtrid φxAC0-C+if0CC0=if0CC0
163 134 162 pm2.61dane φxA-C+if0CC0=if0CC0
164 122 163 oveq12d φxAB+if0BB0+C+if0CC0=if0BB0+if0CC0
165 75 78 164 3eqtrd φxAB+C+if0BB0+if0CC0=if0BB0+if0CC0
166 165 mpteq2dva φxAB+C+if0BB0+if0CC0=xAif0BB0+if0CC0
167 6 58 mbfneg φxABMblFn
168 7 60 mbfneg φxACMblFn
169 74 mpteq2dva φxAB+C=xA-B+C
170 169 71 eqeltrrd φxA-B+CMblFn
171 167 20 168 24 170 mbfposadd φxAif0BB0+if0CC0MblFn
172 166 171 eqeltrd φxAB+C+if0BB0+if0CC0MblFn
173 71 33 61 37 172 mbfposadd φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00MblFn
174 70 173 eqeltrrd φxAif0B+CB+C0+if0BB0+if0CC0MblFn
175 max1 0B+C0if0B+CB+C0
176 13 33 175 sylancr φxA0if0B+CB+C0
177 35 50 37 62 174 35 37 176 67 itgaddnclem1 φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
178 49 simpld φxAif0B+CB+C0𝐿1
179 52 simprd φxAif0BB0𝐿1
180 55 simprd φxAif0CC0𝐿1
181 22 179 26 180 171 ibladdnc φxAif0BB0+if0CC0𝐿1
182 max1 0B0if0BB0
183 13 20 182 sylancr φxA0if0BB0
184 max1 0C0if0CC0
185 13 24 184 sylancr φxA0if0CC0
186 22 26 183 185 addge0d φxA0if0BB0+if0CC0
187 186 iftrued φxAif0if0BB0+if0CC0if0BB0+if0CC00=if0BB0+if0CC0
188 187 oveq2d φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00=if0B+CB+C0+if0BB0+if0CC0
189 188 mpteq2dva φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00=xAif0B+CB+C0+if0BB0+if0CC0
190 72 73 23 27 add4d φxAB+C+if0BB0+if0CC0=B+if0BB0+C+if0CC0
191 84 81 eqtrd B=0if0BB0=0
192 85 191 oveq12d B=0B+if0BB0=0+0
193 192 90 eqtrdi B=0B+if0BB0=0
194 85 87 193 3eqtr4rd B=0B+if0BB0=if0BB0
195 194 adantl φxAB=0B+if0BB0=if0BB0
196 ovif2 B+if0BB0=if0BB+BB+0
197 6 le0neg1d φxAB00B
198 leloe B0B0B<0B=0
199 6 13 198 sylancl φxAB0B<0B=0
200 197 199 bitr3d φxA0BB<0B=0
201 df-ne B0¬B=0
202 biorf ¬B=0B<0B=0B<0
203 201 202 sylbi B0B<0B=0B<0
204 orcom B=0B<0B<0B=0
205 203 204 bitr2di B0B<0B=0B<0
206 200 205 sylan9bb φxAB00BB<0
207 ltnle B0B<0¬0B
208 6 13 207 sylancl φxAB<0¬0B
209 208 adantr φxAB0B<0¬0B
210 206 209 bitrd φxAB00B¬0B
211 113 adantr φxAB0B+B=0
212 72 addridd φxAB+0=B
213 212 adantr φxAB0B+0=B
214 210 211 213 ifbieq12d φxAB0if0BB+BB+0=if¬0B0B
215 ifnot if¬0B0B=if0BB0
216 214 215 eqtrdi φxAB0if0BB+BB+0=if0BB0
217 196 216 eqtrid φxAB0B+if0BB0=if0BB0
218 195 217 pm2.61dane φxAB+if0BB0=if0BB0
219 126 124 eqtrd C=0if0CC0=0
220 127 219 oveq12d C=0C+if0CC0=0+0
221 220 90 eqtrdi C=0C+if0CC0=0
222 127 129 221 3eqtr4rd C=0C+if0CC0=if0CC0
223 222 adantl φxAC=0C+if0CC0=if0CC0
224 ovif2 C+if0CC0=if0CC+CC+0
225 7 le0neg1d φxAC00C
226 leloe C0C0C<0C=0
227 7 13 226 sylancl φxAC0C<0C=0
228 225 227 bitr3d φxA0CC<0C=0
229 df-ne C0¬C=0
230 biorf ¬C=0C<0C=0C<0
231 229 230 sylbi C0C<0C=0C<0
232 orcom C=0C<0C<0C=0
233 231 232 bitr2di C0C<0C=0C<0
234 228 233 sylan9bb φxAC00CC<0
235 ltnle C0C<0¬0C
236 7 13 235 sylancl φxAC<0¬0C
237 236 adantr φxAC0C<0¬0C
238 234 237 bitrd φxAC00C¬0C
239 154 adantr φxAC0C+C=0
240 73 addridd φxAC+0=C
241 240 adantr φxAC0C+0=C
242 238 239 241 ifbieq12d φxAC0if0CC+CC+0=if¬0C0C
243 ifnot if¬0C0C=if0CC0
244 242 243 eqtrdi φxAC0if0CC+CC+0=if0CC0
245 224 244 eqtrid φxAC0C+if0CC0=if0CC0
246 223 245 pm2.61dane φxAC+if0CC0=if0CC0
247 218 246 oveq12d φxAB+if0BB0+C+if0CC0=if0BB0+if0CC0
248 190 247 eqtrd φxAB+C+if0BB0+if0CC0=if0BB0+if0CC0
249 248 mpteq2dva φxAB+C+if0BB0+if0CC0=xAif0BB0+if0CC0
250 249 61 eqeltrd φxAB+C+if0BB0+if0CC0MblFn
251 5 29 171 42 250 mbfposadd φxAif0B+CB+C0+if0if0BB0+if0CC0if0BB0+if0CC00MblFn
252 189 251 eqeltrrd φxAif0B+CB+C0+if0BB0+if0CC0MblFn
253 max1 0B+C0if0B+CB+C0
254 13 29 253 sylancr φxA0if0B+CB+C0
255 40 178 42 181 252 40 42 254 186 itgaddnclem1 φAif0B+CB+C0+if0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
256 46 177 255 3eqtr3d φAif0B+CB+C0dx+Aif0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dx
257 35 50 itgcl φAif0B+CB+C0dx
258 15 53 18 56 61 15 18 64 66 itgaddnclem1 φAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx
259 15 53 itgcl φAif0BB0dx
260 18 56 itgcl φAif0CC0dx
261 259 260 addcld φAif0BB0dx+Aif0CC0dx
262 258 261 eqeltrd φAif0BB0+if0CC0dx
263 40 178 itgcl φAif0B+CB+C0dx
264 22 179 26 180 171 22 26 183 185 itgaddnclem1 φAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx
265 22 179 itgcl φAif0BB0dx
266 26 180 itgcl φAif0CC0dx
267 265 266 addcld φAif0BB0dx+Aif0CC0dx
268 264 267 eqeltrd φAif0BB0+if0CC0dx
269 257 262 263 268 addsubeq4d φAif0B+CB+C0dx+Aif0BB0+if0CC0dx=Aif0B+CB+C0dx+Aif0BB0+if0CC0dxAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0+if0CC0dxAif0BB0+if0CC0dx
270 256 269 mpbid φAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0+if0CC0dxAif0BB0+if0CC0dx
271 258 264 oveq12d φAif0BB0+if0CC0dxAif0BB0+if0CC0dx=Aif0BB0dx+Aif0CC0dx-Aif0BB0dx+Aif0CC0dx
272 259 260 265 266 addsub4d φAif0BB0dx+Aif0CC0dx-Aif0BB0dx+Aif0CC0dx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
273 270 271 272 3eqtrd φAif0B+CB+C0dxAif0B+CB+C0dx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
274 29 47 itgreval φAB+Cdx=Aif0B+CB+C0dxAif0B+CB+C0dx
275 6 2 itgreval φABdx=Aif0BB0dxAif0BB0dx
276 7 4 itgreval φACdx=Aif0CC0dxAif0CC0dx
277 275 276 oveq12d φABdx+ACdx=Aif0BB0dxAif0BB0dx+Aif0CC0dx-Aif0CC0dx
278 273 274 277 3eqtr4d φAB+Cdx=ABdx+ACdx