Metamath Proof Explorer


Theorem itgcoscmulx

Description: Exercise: the integral of x |-> cos a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgcoscmulx.a φA
itgcoscmulx.b φB
itgcoscmulx.c φC
itgcoscmulx.blec φBC
itgcoscmulx.an0 φA0
Assertion itgcoscmulx φBCcosAxdx=sinACsinABA

Proof

Step Hyp Ref Expression
1 itgcoscmulx.a φA
2 itgcoscmulx.b φB
3 itgcoscmulx.c φC
4 itgcoscmulx.blec φBC
5 itgcoscmulx.an0 φA0
6 2 3 iccssred φBC
7 6 resmptd φysinAyABC=yBCsinAyA
8 7 eqcomd φyBCsinAyA=ysinAyABC
9 8 oveq2d φdyBCsinAyAdy=DysinAyABC
10 ax-resscn
11 10 a1i φ
12 11 sselda φyy
13 1 adantr φyA
14 simpr φyy
15 13 14 mulcld φyAy
16 15 sincld φysinAy
17 5 adantr φyA0
18 16 13 17 divcld φysinAyA
19 12 18 syldan φysinAyA
20 19 fmpttd φysinAyA:
21 ssidd φ
22 eqid TopOpenfld=TopOpenfld
23 tgioo4 topGenran.=TopOpenfld𝑡
24 22 23 dvres ysinAyA:BCDysinAyABC=dysinAyAdyinttopGenran.BC
25 11 20 21 6 24 syl22anc φDysinAyABC=dysinAyAdyinttopGenran.BC
26 reelprrecn
27 26 a1i φ
28 12 16 syldan φysinAy
29 1 adantr φyA
30 29 12 mulcld φyAy
31 30 coscld φycosAy
32 29 31 mulcld φyAcosAy
33 11 resmptd φysinAy=ysinAy
34 33 eqcomd φysinAy=ysinAy
35 34 oveq2d φdysinAydy=DysinAy
36 16 fmpttd φysinAy:
37 ssidd φ
38 dvsinax AdysinAydy=yAcosAy
39 1 38 syl φdysinAydy=yAcosAy
40 39 dmeqd φdomdysinAydy=domyAcosAy
41 15 coscld φycosAy
42 13 41 mulcld φyAcosAy
43 42 ralrimiva φyAcosAy
44 dmmptg yAcosAydomyAcosAy=
45 43 44 syl φdomyAcosAy=
46 40 45 eqtr2d φ=domdysinAydy
47 10 46 sseqtrid φdomdysinAydy
48 dvres3 ysinAy:domdysinAydyDysinAy=dysinAydy
49 27 36 37 47 48 syl22anc φDysinAy=dysinAydy
50 39 reseq1d φdysinAydy=yAcosAy
51 11 resmptd φyAcosAy=yAcosAy
52 49 50 51 3eqtrd φDysinAy=yAcosAy
53 35 52 eqtrd φdysinAydy=yAcosAy
54 27 28 32 53 1 5 dvmptdivc φdysinAyAdy=yAcosAyA
55 iccntr BCinttopGenran.BC=BC
56 2 3 55 syl2anc φinttopGenran.BC=BC
57 54 56 reseq12d φdysinAyAdyinttopGenran.BC=yAcosAyABC
58 ioossre BC
59 resmpt BCyAcosAyABC=yBCAcosAyA
60 58 59 mp1i φyAcosAyABC=yBCAcosAyA
61 elioore yBCy
62 61 recnd yBCy
63 62 41 sylan2 φyBCcosAy
64 1 adantr φyBCA
65 5 adantr φyBCA0
66 63 64 65 divcan3d φyBCAcosAyA=cosAy
67 66 mpteq2dva φyBCAcosAyA=yBCcosAy
68 57 60 67 3eqtrd φdysinAyAdyinttopGenran.BC=yBCcosAy
69 9 25 68 3eqtrd φdyBCsinAyAdy=yBCcosAy
70 69 adantr φxBCdyBCsinAyAdy=yBCcosAy
71 oveq2 y=xAy=Ax
72 71 fveq2d y=xcosAy=cosAx
73 72 adantl φxBCy=xcosAy=cosAx
74 simpr φxBCxBC
75 1 adantr φxBCA
76 58 11 sstrid φBC
77 76 sselda φxBCx
78 75 77 mulcld φxBCAx
79 78 coscld φxBCcosAx
80 70 73 74 79 fvmptd φxBCdyBCsinAyAdyx=cosAx
81 80 eqcomd φxBCcosAx=dyBCsinAyAdyx
82 81 itgeq2dv φBCcosAxdx=BCdyBCsinAyAdyxdx
83 eqidd φyBCsinAyA=yBCsinAyA
84 oveq2 y=CAy=AC
85 84 fveq2d y=CsinAy=sinAC
86 85 oveq1d y=CsinAyA=sinACA
87 86 adantl φy=CsinAyA=sinACA
88 2 rexrd φB*
89 3 rexrd φC*
90 ubicc2 B*C*BCCBC
91 88 89 4 90 syl3anc φCBC
92 3 recnd φC
93 1 92 mulcld φAC
94 93 sincld φsinAC
95 94 1 5 divcld φsinACA
96 83 87 91 95 fvmptd φyBCsinAyAC=sinACA
97 oveq2 y=BAy=AB
98 97 fveq2d y=BsinAy=sinAB
99 98 oveq1d y=BsinAyA=sinABA
100 99 adantl φy=BsinAyA=sinABA
101 lbicc2 B*C*BCBBC
102 88 89 4 101 syl3anc φBBC
103 2 recnd φB
104 1 103 mulcld φAB
105 104 sincld φsinAB
106 105 1 5 divcld φsinABA
107 83 100 102 106 fvmptd φyBCsinAyAB=sinABA
108 96 107 oveq12d φyBCsinAyACyBCsinAyAB=sinACAsinABA
109 coscn cos:cn
110 109 a1i φcos:cn
111 76 1 37 constcncfg φyBCA:BCcn
112 76 37 idcncfg φyBCy:BCcn
113 111 112 mulcncf φyBCAy:BCcn
114 110 113 cncfmpt1f φyBCcosAy:BCcn
115 69 114 eqeltrd φdyBCsinAyAdy:BCcn
116 ioossicc BCBC
117 116 a1i φBCBC
118 ioombl BCdomvol
119 118 a1i φBCdomvol
120 1 adantr φyBCA
121 6 10 sstrdi φBC
122 121 sselda φyBCy
123 120 122 mulcld φyBCAy
124 123 coscld φyBCcosAy
125 121 1 37 constcncfg φyBCA:BCcn
126 121 37 idcncfg φyBCy:BCcn
127 125 126 mulcncf φyBCAy:BCcn
128 110 127 cncfmpt1f φyBCcosAy:BCcn
129 cniccibl BCyBCcosAy:BCcnyBCcosAy𝐿1
130 2 3 128 129 syl3anc φyBCcosAy𝐿1
131 117 119 124 130 iblss φyBCcosAy𝐿1
132 69 131 eqeltrd φdyBCsinAyAdy𝐿1
133 sincn sin:cn
134 133 a1i φsin:cn
135 134 127 cncfmpt1f φyBCsinAy:BCcn
136 neneq A0¬A=0
137 elsni A0A=0
138 137 con3i ¬A=0¬A0
139 5 136 138 3syl φ¬A0
140 1 139 eldifd φA0
141 difssd φ0
142 121 140 141 constcncfg φyBCA:BCcn0
143 135 142 divcncf φyBCsinAyA:BCcn
144 2 3 4 115 132 143 ftc2 φBCdyBCsinAyAdyxdx=yBCsinAyACyBCsinAyAB
145 94 105 1 5 divsubdird φsinACsinABA=sinACAsinABA
146 108 144 145 3eqtr4d φBCdyBCsinAyAdyxdx=sinACsinABA
147 82 146 eqtrd φBCcosAxdx=sinACsinABA