Metamath Proof Explorer


Theorem itgsincmulx

Description: Exercise: the integral of x |-> sin a x on an open interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses itgsincmulx.a φA
itgsincmulx.an0 φA0
itgsincmulx.b φB
itgsincmulx.c φC
itgsincmulx.blec φBC
Assertion itgsincmulx φBCsinAxdx=cosABcosACA

Proof

Step Hyp Ref Expression
1 itgsincmulx.a φA
2 itgsincmulx.an0 φA0
3 itgsincmulx.b φB
4 itgsincmulx.c φC
5 itgsincmulx.blec φBC
6 eqid ycosAyA=ycosAyA
7 1 adantr φyA
8 simpr φyy
9 7 8 mulcld φyAy
10 9 coscld φycosAy
11 10 negcld φycosAy
12 2 adantr φyA0
13 11 7 12 divcld φycosAyA
14 cnelprrecn
15 14 a1i φ
16 9 sincld φysinAy
17 16 negcld φysinAy
18 7 17 mulcld φyAsinAy
19 18 negcld φyAsinAy
20 dvcosax AdycosAydy=yAsinAy
21 1 20 syl φdycosAydy=yAsinAy
22 15 10 18 21 dvmptneg φdycosAydy=yAsinAy
23 15 11 19 22 1 2 dvmptdivc φdycosAyAdy=yAsinAyA
24 18 7 12 divnegd φyAsinAyA=AsinAyA
25 24 eqcomd φyAsinAyA=AsinAyA
26 17 7 12 divcan3d φyAsinAyA=sinAy
27 26 negeqd φyAsinAyA=sinAy
28 16 negnegd φysinAy=sinAy
29 25 27 28 3eqtrd φyAsinAyA=sinAy
30 29 mpteq2dva φyAsinAyA=ysinAy
31 23 30 eqtrd φdycosAyAdy=ysinAy
32 6 13 31 16 3 4 dvmptresicc φdyBCcosAyAdy=yBCsinAy
33 32 fveq1d φdyBCcosAyAdyx=yBCsinAyx
34 33 adantr φxBCdyBCcosAyAdyx=yBCsinAyx
35 eqidd φxBCyBCsinAy=yBCsinAy
36 oveq2 y=xAy=Ax
37 36 fveq2d y=xsinAy=sinAx
38 37 adantl φxBCy=xsinAy=sinAx
39 simpr φxBCxBC
40 1 adantr φxBCA
41 ioosscn BC
42 41 39 sselid φxBCx
43 40 42 mulcld φxBCAx
44 43 sincld φxBCsinAx
45 35 38 39 44 fvmptd φxBCyBCsinAyx=sinAx
46 34 45 eqtr2d φxBCsinAx=dyBCcosAyAdyx
47 46 itgeq2dv φBCsinAxdx=BCdyBCcosAyAdyxdx
48 sincn sin:cn
49 48 a1i φsin:cn
50 41 a1i φBC
51 ssid
52 51 a1i φ
53 50 1 52 constcncfg φyBCA:BCcn
54 50 52 idcncfg φyBCy:BCcn
55 53 54 mulcncf φyBCAy:BCcn
56 49 55 cncfmpt1f φyBCsinAy:BCcn
57 32 56 eqeltrd φdyBCcosAyAdy:BCcn
58 ioossicc BCBC
59 58 a1i φBCBC
60 ioombl BCdomvol
61 60 a1i φBCdomvol
62 1 adantr φyBCA
63 3 4 iccssred φBC
64 ax-resscn
65 63 64 sstrdi φBC
66 65 sselda φyBCy
67 62 66 mulcld φyBCAy
68 67 sincld φyBCsinAy
69 65 1 52 constcncfg φyBCA:BCcn
70 65 52 idcncfg φyBCy:BCcn
71 69 70 mulcncf φyBCAy:BCcn
72 49 71 cncfmpt1f φyBCsinAy:BCcn
73 cniccibl BCyBCsinAy:BCcnyBCsinAy𝐿1
74 3 4 72 73 syl3anc φyBCsinAy𝐿1
75 59 61 68 74 iblss φyBCsinAy𝐿1
76 32 75 eqeltrd φdyBCcosAyAdy𝐿1
77 coscn cos:cn
78 77 a1i φcos:cn
79 78 71 cncfmpt1f φyBCcosAy:BCcn
80 79 negcncfg φyBCcosAy:BCcn
81 2 neneqd φ¬A=0
82 elsng AA0A=0
83 1 82 syl φA0A=0
84 81 83 mtbird φ¬A0
85 1 84 eldifd φA0
86 difssd φ0
87 65 85 86 constcncfg φyBCA:BCcn0
88 80 87 divcncf φyBCcosAyA:BCcn
89 3 4 5 57 76 88 ftc2 φBCdyBCcosAyAdyxdx=yBCcosAyACyBCcosAyAB
90 eqidd φyBCcosAyA=yBCcosAyA
91 oveq2 y=CAy=AC
92 91 fveq2d y=CcosAy=cosAC
93 92 negeqd y=CcosAy=cosAC
94 93 oveq1d y=CcosAyA=cosACA
95 94 adantl φy=CcosAyA=cosACA
96 3 rexrd φB*
97 4 rexrd φC*
98 ubicc2 B*C*BCCBC
99 96 97 5 98 syl3anc φCBC
100 ovexd φcosACAV
101 90 95 99 100 fvmptd φyBCcosAyAC=cosACA
102 oveq2 y=BAy=AB
103 102 fveq2d y=BcosAy=cosAB
104 103 negeqd y=BcosAy=cosAB
105 104 oveq1d y=BcosAyA=cosABA
106 105 adantl φy=BcosAyA=cosABA
107 lbicc2 B*C*BCBBC
108 96 97 5 107 syl3anc φBBC
109 ovexd φcosABAV
110 90 106 108 109 fvmptd φyBCcosAyAB=cosABA
111 101 110 oveq12d φyBCcosAyACyBCcosAyAB=cosACAcosABA
112 3 recnd φB
113 1 112 mulcld φAB
114 113 coscld φcosAB
115 114 1 2 divnegd φcosABA=cosABA
116 115 eqcomd φcosABA=cosABA
117 116 oveq2d φcosACAcosABA=cosACAcosABA
118 4 recnd φC
119 1 118 mulcld φAC
120 119 coscld φcosAC
121 120 negcld φcosAC
122 121 1 2 divcld φcosACA
123 114 1 2 divcld φcosABA
124 122 123 subnegd φcosACAcosABA=cosACA+cosABA
125 111 117 124 3eqtrd φyBCcosAyACyBCcosAyAB=cosACA+cosABA
126 122 123 addcomd φcosACA+cosABA=cosABA+cosACA
127 120 1 2 divnegd φcosACA=cosACA
128 127 eqcomd φcosACA=cosACA
129 128 oveq2d φcosABA+cosACA=cosABA+cosACA
130 120 1 2 divcld φcosACA
131 123 130 negsubd φcosABA+cosACA=cosABAcosACA
132 114 120 1 2 divsubdird φcosABcosACA=cosABAcosACA
133 132 eqcomd φcosABAcosACA=cosABcosACA
134 129 131 133 3eqtrd φcosABA+cosACA=cosABcosACA
135 125 126 134 3eqtrd φyBCcosAyACyBCcosAyAB=cosABcosACA
136 47 89 135 3eqtrd φBCsinAxdx=cosABcosACA