| Step | Hyp | Ref | Expression | 
						
							| 1 |  | kelac1.z |  | 
						
							| 2 |  | kelac1.j |  | 
						
							| 3 |  | kelac1.c |  | 
						
							| 4 |  | kelac1.b |  | 
						
							| 5 |  | kelac1.u |  | 
						
							| 6 |  | kelac1.k |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 7 | cldss |  | 
						
							| 9 | 3 8 | syl |  | 
						
							| 10 | 9 | ralrimiva |  | 
						
							| 11 |  | boxriin |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 |  | cmptop |  | 
						
							| 14 |  | 0ntop |  | 
						
							| 15 |  | fvprc |  | 
						
							| 16 | 15 | eleq1d |  | 
						
							| 17 | 14 16 | mtbiri |  | 
						
							| 18 | 17 | con4i |  | 
						
							| 19 | 6 13 18 | 3syl |  | 
						
							| 20 | 2 | fmpttd |  | 
						
							| 21 |  | dmfex |  | 
						
							| 22 | 19 20 21 | syl2anc |  | 
						
							| 23 | 2 | ralrimiva |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 | 24 | ptunimpt |  | 
						
							| 26 | 22 23 25 | syl2anc |  | 
						
							| 27 | 26 | ineq1d |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 7 | topcld |  | 
						
							| 30 | 2 29 | syl |  | 
						
							| 31 | 3 30 | ifcld |  | 
						
							| 32 | 22 2 31 | ptcldmpt |  | 
						
							| 33 | 32 | adantr |  | 
						
							| 34 |  | simprr |  | 
						
							| 35 |  | f1ofo |  | 
						
							| 36 |  | foima |  | 
						
							| 37 | 4 35 36 | 3syl |  | 
						
							| 38 | 37 | eqcomd |  | 
						
							| 39 |  | f1ofn |  | 
						
							| 40 | 4 39 | syl |  | 
						
							| 41 |  | ssid |  | 
						
							| 42 |  | fnimaeq0 |  | 
						
							| 43 | 40 41 42 | sylancl |  | 
						
							| 44 | 43 | necon3bid |  | 
						
							| 45 | 1 44 | mpbird |  | 
						
							| 46 | 38 45 | eqnetrd |  | 
						
							| 47 |  | n0 |  | 
						
							| 48 | 46 47 | sylib |  | 
						
							| 49 |  | rexv |  | 
						
							| 50 | 48 49 | sylibr |  | 
						
							| 51 | 50 | ralrimiva |  | 
						
							| 52 |  | ssralv |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 | 51 53 | mpan9 |  | 
						
							| 55 |  | eleq1 |  | 
						
							| 56 | 55 | ac6sfi |  | 
						
							| 57 | 34 54 56 | syl2anc |  | 
						
							| 58 | 26 | eqcomd |  | 
						
							| 59 | 58 | ineq1d |  | 
						
							| 60 | 59 | ad2antrr |  | 
						
							| 61 |  | iftrue |  | 
						
							| 62 | 61 | ad2antrl |  | 
						
							| 63 |  | simpll |  | 
						
							| 64 |  | simprl |  | 
						
							| 65 | 64 | sselda |  | 
						
							| 66 | 63 65 9 | syl2anc |  | 
						
							| 67 | 66 | sseld |  | 
						
							| 68 | 67 | impr |  | 
						
							| 69 | 62 68 | eqeltrd |  | 
						
							| 70 | 69 | expr |  | 
						
							| 71 | 70 | ralimdva |  | 
						
							| 72 | 71 | imp |  | 
						
							| 73 |  | eldifn |  | 
						
							| 74 | 73 | iffalsed |  | 
						
							| 75 | 74 | adantl |  | 
						
							| 76 |  | eldifi |  | 
						
							| 77 | 76 5 | sylan2 |  | 
						
							| 78 | 75 77 | eqeltrd |  | 
						
							| 79 | 78 | ralrimiva |  | 
						
							| 80 | 79 | ad2antrr |  | 
						
							| 81 |  | ralun |  | 
						
							| 82 | 72 80 81 | syl2anc |  | 
						
							| 83 |  | undif |  | 
						
							| 84 | 83 | biimpi |  | 
						
							| 85 | 84 | ad2antrl |  | 
						
							| 86 | 85 | raleqdv |  | 
						
							| 87 | 86 | adantr |  | 
						
							| 88 | 82 87 | mpbid |  | 
						
							| 89 | 22 | ad2antrr |  | 
						
							| 90 |  | mptelixpg |  | 
						
							| 91 | 89 90 | syl |  | 
						
							| 92 | 88 91 | mpbird |  | 
						
							| 93 |  | eleq2 |  | 
						
							| 94 |  | eleq2 |  | 
						
							| 95 |  | simplrr |  | 
						
							| 96 | 68 | adantr |  | 
						
							| 97 | 93 94 95 96 | ifbothda |  | 
						
							| 98 | 62 97 | eqeltrd |  | 
						
							| 99 | 98 | expr |  | 
						
							| 100 | 99 | ralimdva |  | 
						
							| 101 | 100 | imp |  | 
						
							| 102 | 101 | adantr |  | 
						
							| 103 | 77 | adantlr |  | 
						
							| 104 | 74 | adantl |  | 
						
							| 105 |  | disjdifr |  | 
						
							| 106 | 105 | a1i |  | 
						
							| 107 |  | simpr |  | 
						
							| 108 |  | simplr |  | 
						
							| 109 |  | disjne |  | 
						
							| 110 | 106 107 108 109 | syl3anc |  | 
						
							| 111 | 110 | neneqd |  | 
						
							| 112 | 111 | iffalsed |  | 
						
							| 113 | 103 104 112 | 3eltr4d |  | 
						
							| 114 | 113 | ralrimiva |  | 
						
							| 115 | 114 | adantlr |  | 
						
							| 116 | 115 | adantlr |  | 
						
							| 117 |  | ralun |  | 
						
							| 118 | 102 116 117 | syl2anc |  | 
						
							| 119 | 85 | raleqdv |  | 
						
							| 120 | 119 | ad2antrr |  | 
						
							| 121 | 118 120 | mpbid |  | 
						
							| 122 | 22 | ad3antrrr |  | 
						
							| 123 |  | mptelixpg |  | 
						
							| 124 | 122 123 | syl |  | 
						
							| 125 | 121 124 | mpbird |  | 
						
							| 126 | 125 | ralrimiva |  | 
						
							| 127 |  | mptexg |  | 
						
							| 128 | 22 127 | syl |  | 
						
							| 129 | 128 | ad2antrr |  | 
						
							| 130 |  | eliin |  | 
						
							| 131 | 129 130 | syl |  | 
						
							| 132 | 126 131 | mpbird |  | 
						
							| 133 | 92 132 | elind |  | 
						
							| 134 | 133 | ne0d |  | 
						
							| 135 | 60 134 | eqnetrd |  | 
						
							| 136 | 135 | adantrl |  | 
						
							| 137 | 57 136 | exlimddv |  | 
						
							| 138 | 28 6 33 137 | cmpfiiin |  | 
						
							| 139 | 27 138 | eqnetrd |  | 
						
							| 140 | 12 139 | eqnetrd |  | 
						
							| 141 |  | n0 |  | 
						
							| 142 | 140 141 | sylib |  | 
						
							| 143 |  | elixp2 |  | 
						
							| 144 | 143 | simp3bi |  | 
						
							| 145 |  | f1ocnv |  | 
						
							| 146 |  | f1of |  | 
						
							| 147 |  | ffvelcdm |  | 
						
							| 148 | 147 | ex |  | 
						
							| 149 | 4 145 146 148 | 4syl |  | 
						
							| 150 | 149 | ralimdva |  | 
						
							| 151 | 150 | imp |  | 
						
							| 152 | 144 151 | sylan2 |  | 
						
							| 153 |  | mptelixpg |  | 
						
							| 154 | 22 153 | syl |  | 
						
							| 155 | 154 | adantr |  | 
						
							| 156 | 152 155 | mpbird |  | 
						
							| 157 | 156 | ne0d |  | 
						
							| 158 | 142 157 | exlimddv |  |