Metamath Proof Explorer


Theorem limsupre3uzlem

Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is less than or equal to the function, infinitely often; 2. there is a real number that is eventually greater than or equal to the function. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupre3uzlem.1 _jF
limsupre3uzlem.2 φM
limsupre3uzlem.3 Z=M
limsupre3uzlem.4 φF:Z*
Assertion limsupre3uzlem φlim supFxkZjkxFjxkZjkFjx

Proof

Step Hyp Ref Expression
1 limsupre3uzlem.1 _jF
2 limsupre3uzlem.2 φM
3 limsupre3uzlem.3 Z=M
4 limsupre3uzlem.4 φF:Z*
5 uzssre M
6 3 5 eqsstri Z
7 6 a1i φZ
8 1 7 4 limsupre3 φlim supFxyjZyjxFjxyjZyjFjx
9 breq1 y=kyjkj
10 9 anbi1d y=kyjxFjkjxFj
11 10 rexbidv y=kjZyjxFjjZkjxFj
12 11 cbvralvw yjZyjxFjkjZkjxFj
13 12 biimpi yjZyjxFjkjZkjxFj
14 nfra1 kkjZkjxFj
15 simpr kjZkjxFjkZkZ
16 6 15 sselid kjZkjxFjkZk
17 rspa kjZkjxFjkjZkjxFj
18 16 17 syldan kjZkjxFjkZjZkjxFj
19 nfv jkZ
20 nfre1 jjkxFj
21 eqid k=k
22 3 eluzelz2 kZk
23 22 3ad2ant1 kZjZkjk
24 3 eluzelz2 jZj
25 24 3ad2ant2 kZjZkjj
26 simp3 kZjZkjkj
27 21 23 25 26 eluzd kZjZkjjk
28 27 3adant3r kZjZkjxFjjk
29 simp3r kZjZkjxFjxFj
30 rspe jkxFjjkxFj
31 28 29 30 syl2anc kZjZkjxFjjkxFj
32 31 3exp kZjZkjxFjjkxFj
33 19 20 32 rexlimd kZjZkjxFjjkxFj
34 33 imp kZjZkjxFjjkxFj
35 15 18 34 syl2anc kjZkjxFjkZjkxFj
36 14 35 ralrimia kjZkjxFjkZjkxFj
37 13 36 syl yjZyjxFjkZjkxFj
38 37 a1i φyjZyjxFjkZjkxFj
39 iftrue MyifMyyM=y
40 39 adantl φyMyifMyyM=y
41 2 ad2antrr φyMyM
42 ceilcl yy
43 42 ad2antlr φyMyy
44 simpr φyMyMy
45 3 41 43 44 eluzd φyMyyZ
46 40 45 eqeltrd φyMyifMyyMZ
47 iffalse ¬MyifMyyM=M
48 47 adantl φ¬MyifMyyM=M
49 2 3 uzidd2 φMZ
50 49 adantr φ¬MyMZ
51 48 50 eqeltrd φ¬MyifMyyMZ
52 51 adantlr φy¬MyifMyyMZ
53 46 52 pm2.61dan φyifMyyMZ
54 53 adantlr φkZjkxFjyifMyyMZ
55 simplr φkZjkxFjykZjkxFj
56 fveq2 k=ifMyyMk=ifMyyM
57 56 rexeqdv k=ifMyyMjkxFjjifMyyMxFj
58 57 rspcva ifMyyMZkZjkxFjjifMyyMxFj
59 54 55 58 syl2anc φkZjkxFjyjifMyyMxFj
60 nfv jφ
61 19 nfci _jZ
62 61 20 nfralw jkZjkxFj
63 60 62 nfan jφkZjkxFj
64 nfv jy
65 63 64 nfan jφkZjkxFjy
66 nfre1 jjZyjxFj
67 2 ad2antrr φyjifMyyMM
68 eluzelz jifMyyMj
69 68 adantl φyjifMyyMj
70 67 zred φyjifMyyMM
71 6 53 sselid φyifMyyM
72 71 adantr φyjifMyyMifMyyM
73 69 zred φyjifMyyMj
74 6 49 sselid φM
75 74 adantr φyM
76 42 zred yy
77 76 adantl φyy
78 max1 MyMifMyyM
79 75 77 78 syl2anc φyMifMyyM
80 79 adantr φyjifMyyMMifMyyM
81 eluzle jifMyyMifMyyMj
82 81 adantl φyjifMyyMifMyyMj
83 70 72 73 80 82 letrd φyjifMyyMMj
84 3 67 69 83 eluzd φyjifMyyMjZ
85 84 3adant3 φyjifMyyMxFjjZ
86 simplr φyjifMyyMy
87 simpr φyy
88 ceilge yyy
89 88 adantl φyyy
90 max2 MyyifMyyM
91 75 77 90 syl2anc φyyifMyyM
92 87 77 71 89 91 letrd φyyifMyyM
93 92 adantr φyjifMyyMyifMyyM
94 86 72 73 93 82 letrd φyjifMyyMyj
95 94 3adant3 φyjifMyyMxFjyj
96 simp3 φyjifMyyMxFjxFj
97 95 96 jca φyjifMyyMxFjyjxFj
98 rspe jZyjxFjjZyjxFj
99 85 97 98 syl2anc φyjifMyyMxFjjZyjxFj
100 99 3exp φyjifMyyMxFjjZyjxFj
101 100 adantlr φkZjkxFjyjifMyyMxFjjZyjxFj
102 65 66 101 rexlimd φkZjkxFjyjifMyyMxFjjZyjxFj
103 59 102 mpd φkZjkxFjyjZyjxFj
104 103 ralrimiva φkZjkxFjyjZyjxFj
105 104 ex φkZjkxFjyjZyjxFj
106 38 105 impbid φyjZyjxFjkZjkxFj
107 106 rexbidv φxyjZyjxFjxkZjkxFj
108 53 adantr φyjZyjFjxifMyyMZ
109 60 64 nfan jφy
110 nfra1 jjZyjFjx
111 109 110 nfan jφyjZyjFjx
112 94 adantlr φyjZyjFjxjifMyyMyj
113 simplr φyjZyjFjxjifMyyMjZyjFjx
114 84 adantlr φyjZyjFjxjifMyyMjZ
115 rspa jZyjFjxjZyjFjx
116 113 114 115 syl2anc φyjZyjFjxjifMyyMyjFjx
117 112 116 mpd φyjZyjFjxjifMyyMFjx
118 117 ex φyjZyjFjxjifMyyMFjx
119 111 118 ralrimi φyjZyjFjxjifMyyMFjx
120 56 raleqdv k=ifMyyMjkFjxjifMyyMFjx
121 120 rspcev ifMyyMZjifMyyMFjxkZjkFjx
122 108 119 121 syl2anc φyjZyjFjxkZjkFjx
123 122 rexlimdva2 φyjZyjFjxkZjkFjx
124 6 sseli kZk
125 124 ad2antlr φkZjkFjxk
126 nfra1 jjkFjx
127 19 126 nfan jkZjkFjx
128 simp1r kZjkFjxjZkjjkFjx
129 27 3adant1r kZjkFjxjZkjjk
130 rspa jkFjxjkFjx
131 128 129 130 syl2anc kZjkFjxjZkjFjx
132 131 3exp kZjkFjxjZkjFjx
133 127 132 ralrimi kZjkFjxjZkjFjx
134 133 adantll φkZjkFjxjZkjFjx
135 9 rspceaimv kjZkjFjxyjZyjFjx
136 125 134 135 syl2anc φkZjkFjxyjZyjFjx
137 136 rexlimdva2 φkZjkFjxyjZyjFjx
138 123 137 impbid φyjZyjFjxkZjkFjx
139 138 rexbidv φxyjZyjFjxxkZjkFjx
140 107 139 anbi12d φxyjZyjxFjxyjZyjFjxxkZjkxFjxkZjkFjx
141 8 140 bitrd φlim supFxkZjkxFjxkZjkFjx