Step |
Hyp |
Ref |
Expression |
1 |
|
limsupre3uzlem.1 |
|
2 |
|
limsupre3uzlem.2 |
|
3 |
|
limsupre3uzlem.3 |
|
4 |
|
limsupre3uzlem.4 |
|
5 |
|
uzssre |
|
6 |
3 5
|
eqsstri |
|
7 |
6
|
a1i |
|
8 |
1 7 4
|
limsupre3 |
|
9 |
|
breq1 |
|
10 |
9
|
anbi1d |
|
11 |
10
|
rexbidv |
|
12 |
11
|
cbvralvw |
|
13 |
12
|
biimpi |
|
14 |
|
nfra1 |
|
15 |
|
simpr |
|
16 |
6 15
|
sselid |
|
17 |
|
rspa |
|
18 |
16 17
|
syldan |
|
19 |
|
nfv |
|
20 |
|
nfre1 |
|
21 |
|
eqid |
|
22 |
3
|
eluzelz2 |
|
23 |
22
|
3ad2ant1 |
|
24 |
3
|
eluzelz2 |
|
25 |
24
|
3ad2ant2 |
|
26 |
|
simp3 |
|
27 |
21 23 25 26
|
eluzd |
|
28 |
27
|
3adant3r |
|
29 |
|
simp3r |
|
30 |
|
rspe |
|
31 |
28 29 30
|
syl2anc |
|
32 |
31
|
3exp |
|
33 |
19 20 32
|
rexlimd |
|
34 |
33
|
imp |
|
35 |
15 18 34
|
syl2anc |
|
36 |
14 35
|
ralrimia |
|
37 |
13 36
|
syl |
|
38 |
37
|
a1i |
|
39 |
|
iftrue |
|
40 |
39
|
adantl |
|
41 |
2
|
ad2antrr |
|
42 |
|
ceilcl |
|
43 |
42
|
ad2antlr |
|
44 |
|
simpr |
|
45 |
3 41 43 44
|
eluzd |
|
46 |
40 45
|
eqeltrd |
|
47 |
|
iffalse |
|
48 |
47
|
adantl |
|
49 |
2 3
|
uzidd2 |
|
50 |
49
|
adantr |
|
51 |
48 50
|
eqeltrd |
|
52 |
51
|
adantlr |
|
53 |
46 52
|
pm2.61dan |
|
54 |
53
|
adantlr |
|
55 |
|
simplr |
|
56 |
|
fveq2 |
|
57 |
56
|
rexeqdv |
|
58 |
57
|
rspcva |
|
59 |
54 55 58
|
syl2anc |
|
60 |
|
nfv |
|
61 |
19
|
nfci |
|
62 |
61 20
|
nfralw |
|
63 |
60 62
|
nfan |
|
64 |
|
nfv |
|
65 |
63 64
|
nfan |
|
66 |
|
nfre1 |
|
67 |
2
|
ad2antrr |
|
68 |
|
eluzelz |
|
69 |
68
|
adantl |
|
70 |
67
|
zred |
|
71 |
6 53
|
sselid |
|
72 |
71
|
adantr |
|
73 |
69
|
zred |
|
74 |
6 49
|
sselid |
|
75 |
74
|
adantr |
|
76 |
42
|
zred |
|
77 |
76
|
adantl |
|
78 |
|
max1 |
|
79 |
75 77 78
|
syl2anc |
|
80 |
79
|
adantr |
|
81 |
|
eluzle |
|
82 |
81
|
adantl |
|
83 |
70 72 73 80 82
|
letrd |
|
84 |
3 67 69 83
|
eluzd |
|
85 |
84
|
3adant3 |
|
86 |
|
simplr |
|
87 |
|
simpr |
|
88 |
|
ceilge |
|
89 |
88
|
adantl |
|
90 |
|
max2 |
|
91 |
75 77 90
|
syl2anc |
|
92 |
87 77 71 89 91
|
letrd |
|
93 |
92
|
adantr |
|
94 |
86 72 73 93 82
|
letrd |
|
95 |
94
|
3adant3 |
|
96 |
|
simp3 |
|
97 |
95 96
|
jca |
|
98 |
|
rspe |
|
99 |
85 97 98
|
syl2anc |
|
100 |
99
|
3exp |
|
101 |
100
|
adantlr |
|
102 |
65 66 101
|
rexlimd |
|
103 |
59 102
|
mpd |
|
104 |
103
|
ralrimiva |
|
105 |
104
|
ex |
|
106 |
38 105
|
impbid |
|
107 |
106
|
rexbidv |
|
108 |
53
|
adantr |
|
109 |
60 64
|
nfan |
|
110 |
|
nfra1 |
|
111 |
109 110
|
nfan |
|
112 |
94
|
adantlr |
|
113 |
|
simplr |
|
114 |
84
|
adantlr |
|
115 |
|
rspa |
|
116 |
113 114 115
|
syl2anc |
|
117 |
112 116
|
mpd |
|
118 |
117
|
ex |
|
119 |
111 118
|
ralrimi |
|
120 |
56
|
raleqdv |
|
121 |
120
|
rspcev |
|
122 |
108 119 121
|
syl2anc |
|
123 |
122
|
rexlimdva2 |
|
124 |
6
|
sseli |
|
125 |
124
|
ad2antlr |
|
126 |
|
nfra1 |
|
127 |
19 126
|
nfan |
|
128 |
|
simp1r |
|
129 |
27
|
3adant1r |
|
130 |
|
rspa |
|
131 |
128 129 130
|
syl2anc |
|
132 |
131
|
3exp |
|
133 |
127 132
|
ralrimi |
|
134 |
133
|
adantll |
|
135 |
9
|
rspceaimv |
|
136 |
125 134 135
|
syl2anc |
|
137 |
136
|
rexlimdva2 |
|
138 |
123 137
|
impbid |
|
139 |
138
|
rexbidv |
|
140 |
107 139
|
anbi12d |
|
141 |
8 140
|
bitrd |
|