Metamath Proof Explorer


Theorem limsupvaluz2

Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz2.m φM
limsupvaluz2.z Z=M
limsupvaluz2.f φF:Z
limsupvaluz2.r φlim supF
Assertion limsupvaluz2 φlim supF=suprankZsupranFk*<<

Proof

Step Hyp Ref Expression
1 limsupvaluz2.m φM
2 limsupvaluz2.z Z=M
3 limsupvaluz2.f φF:Z
4 limsupvaluz2.r φlim supF
5 3 frexr φF:Z*
6 1 2 5 limsupvaluz φlim supF=suprannZsupranFn*<*<
7 3 adantr φnZF:Z
8 id nZnZ
9 2 8 uzssd2 nZnZ
10 9 adantl φnZnZ
11 7 10 feqresmpt φnZFn=mnFm
12 11 rneqd φnZranFn=ranmnFm
13 12 supeq1d φnZsupranFn*<=supranmnFm*<
14 nfcv _mF
15 4 renepnfd φlim supF+∞
16 14 2 3 15 limsupubuz φxmZFmx
17 16 adantr φnZxmZFmx
18 ssralv nZmZFmxmnFmx
19 9 18 syl nZmZFmxmnFmx
20 19 adantl φnZmZFmxmnFmx
21 20 reximdv φnZxmZFmxxmnFmx
22 17 21 mpd φnZxmnFmx
23 nfv mφnZ
24 2 eluzelz2 nZn
25 uzid nnn
26 ne0i nnn
27 24 25 26 3syl nZn
28 27 adantl φnZn
29 7 adantr φnZmnF:Z
30 10 sselda φnZmnmZ
31 29 30 ffvelcdmd φnZmnFm
32 23 28 31 supxrre3rnmpt φnZsupranmnFm*<xmnFmx
33 22 32 mpbird φnZsupranmnFm*<
34 13 33 eqeltrd φnZsupranFn*<
35 34 fmpttd φnZsupranFn*<:Z
36 35 frnd φrannZsupranFn*<
37 nfv nφ
38 eqid nZsupranFn*<=nZsupranFn*<
39 1 2 uzn0d φZ
40 37 34 38 39 rnmptn0 φrannZsupranFn*<
41 nfcv _jF
42 41 1 2 5 limsupre3uz φlim supFxiZjixFjxiZjiFjx
43 4 42 mpbid φxiZjixFjxiZjiFjx
44 43 simpld φxiZjixFj
45 simp-4r φxiZjixFjx
46 45 rexrd φxiZjixFjx*
47 5 3ad2ant1 φiZjiF:Z*
48 2 uztrn2 iZjijZ
49 48 3adant1 φiZjijZ
50 47 49 ffvelcdmd φiZjiFj*
51 50 ad5ant134 φxiZjixFjFj*
52 rnresss ranFiranF
53 52 a1i φiZranFiranF
54 3 frnd φranF
55 54 adantr φiZranF
56 53 55 sstrd φiZranFi
57 ressxr *
58 57 a1i φiZ*
59 56 58 sstrd φiZranFi*
60 59 supxrcld φiZsupranFi*<*
61 60 ad5ant13 φxiZjixFjsupranFi*<*
62 simpr φxiZjixFjxFj
63 59 3adant3 φiZjiranFi*
64 fvres jiFij=Fj
65 64 eqcomd jiFj=Fij
66 65 3ad2ant3 φiZjiFj=Fij
67 3 ffnd φFFnZ
68 67 adantr φiZFFnZ
69 id iZiZ
70 2 69 uzssd2 iZiZ
71 70 adantl φiZiZ
72 fnssres FFnZiZFiFni
73 68 71 72 syl2anc φiZFiFni
74 73 3adant3 φiZjiFiFni
75 simp3 φiZjiji
76 fnfvelrn FiFnijiFijranFi
77 74 75 76 syl2anc φiZjiFijranFi
78 66 77 eqeltrd φiZjiFjranFi
79 eqid supranFi*<=supranFi*<
80 63 78 79 supxrubd φiZjiFjsupranFi*<
81 80 ad5ant134 φxiZjixFjFjsupranFi*<
82 46 51 61 62 81 xrletrd φxiZjixFjxsupranFi*<
83 82 rexlimdva2 φxiZjixFjxsupranFi*<
84 83 ralimdva φxiZjixFjiZxsupranFi*<
85 84 reximdva φxiZjixFjxiZxsupranFi*<
86 44 85 mpd φxiZxsupranFi*<
87 86 idi φxiZxsupranFi*<
88 fveq2 n=in=i
89 88 reseq2d n=iFn=Fi
90 89 rneqd n=iranFn=ranFi
91 90 supeq1d n=isupranFn*<=supranFi*<
92 eqcom n=ii=n
93 92 imbi1i n=isupranFn*<=supranFi*<i=nsupranFn*<=supranFi*<
94 eqcom supranFn*<=supranFi*<supranFi*<=supranFn*<
95 94 imbi2i i=nsupranFn*<=supranFi*<i=nsupranFi*<=supranFn*<
96 93 95 bitri n=isupranFn*<=supranFi*<i=nsupranFi*<=supranFn*<
97 91 96 mpbi i=nsupranFi*<=supranFn*<
98 97 breq2d i=nxsupranFi*<xsupranFn*<
99 98 cbvralvw iZxsupranFi*<nZxsupranFn*<
100 99 rexbii xiZxsupranFi*<xnZxsupranFn*<
101 87 100 sylib φxnZxsupranFn*<
102 34 elexd φnZsupranFn*<V
103 37 102 rnmptbd2 φxnZxsupranFn*<xyrannZsupranFn*<xy
104 101 103 mpbid φxyrannZsupranFn*<xy
105 infxrre rannZsupranFn*<rannZsupranFn*<xyrannZsupranFn*<xysuprannZsupranFn*<*<=suprannZsupranFn*<<
106 36 40 104 105 syl3anc φsuprannZsupranFn*<*<=suprannZsupranFn*<<
107 fveq2 n=kn=k
108 107 reseq2d n=kFn=Fk
109 108 rneqd n=kranFn=ranFk
110 109 supeq1d n=ksupranFn*<=supranFk*<
111 110 cbvmptv nZsupranFn*<=kZsupranFk*<
112 111 rneqi rannZsupranFn*<=rankZsupranFk*<
113 112 infeq1i suprannZsupranFn*<<=suprankZsupranFk*<<
114 113 a1i φsuprannZsupranFn*<<=suprankZsupranFk*<<
115 6 106 114 3eqtrd φlim supF=suprankZsupranFk*<<