Metamath Proof Explorer


Theorem llycmpkgen2

Description: A locally compact space is compactly generated. (This variant of llycmpkgen uses the weaker definition of locally compact, "every point has a compact neighborhood", instead of "every point has a local base of compact neighborhoods".) (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypotheses iskgen3.1 X=J
llycmpkgen2.2 φJTop
llycmpkgen2.3 φxXkneiJxJ𝑡kComp
Assertion llycmpkgen2 φJran𝑘Gen

Proof

Step Hyp Ref Expression
1 iskgen3.1 X=J
2 llycmpkgen2.2 φJTop
3 llycmpkgen2.3 φxXkneiJxJ𝑡kComp
4 elssuni u𝑘GenJu𝑘GenJ
5 4 adantl φu𝑘GenJu𝑘GenJ
6 1 kgenuni JTopX=𝑘GenJ
7 2 6 syl φX=𝑘GenJ
8 7 adantr φu𝑘GenJX=𝑘GenJ
9 5 8 sseqtrrd φu𝑘GenJuX
10 9 sselda φu𝑘GenJxuxX
11 3 adantlr φu𝑘GenJxXkneiJxJ𝑡kComp
12 10 11 syldan φu𝑘GenJxukneiJxJ𝑡kComp
13 2 ad3antrrr φu𝑘GenJxukneiJxJ𝑡kCompJTop
14 difss XkuX
15 1 ntropn JTopXkuXintJXkuJ
16 13 14 15 sylancl φu𝑘GenJxukneiJxJ𝑡kCompintJXkuJ
17 simprl φu𝑘GenJxukneiJxJ𝑡kCompkneiJx
18 1 neii1 JTopkneiJxkX
19 13 17 18 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompkX
20 1 ntropn JTopkXintJkJ
21 13 19 20 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompintJkJ
22 inopn JTopintJXkuJintJkJintJXkuintJkJ
23 13 16 21 22 syl3anc φu𝑘GenJxukneiJxJ𝑡kCompintJXkuintJkJ
24 simplr φu𝑘GenJxukneiJxJ𝑡kCompxu
25 1 ntrss2 JTopkXintJkk
26 13 19 25 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompintJkk
27 10 adantr φu𝑘GenJxukneiJxJ𝑡kCompxX
28 27 snssd φu𝑘GenJxukneiJxJ𝑡kCompxX
29 1 neiint JTopxXkXkneiJxxintJk
30 13 28 19 29 syl3anc φu𝑘GenJxukneiJxJ𝑡kCompkneiJxxintJk
31 17 30 mpbid φu𝑘GenJxukneiJxJ𝑡kCompxintJk
32 vex xV
33 32 snss xintJkxintJk
34 31 33 sylibr φu𝑘GenJxukneiJxJ𝑡kCompxintJk
35 26 34 sseldd φu𝑘GenJxukneiJxJ𝑡kCompxk
36 24 35 elind φu𝑘GenJxukneiJxJ𝑡kCompxuk
37 simpllr φu𝑘GenJxukneiJxJ𝑡kCompu𝑘GenJ
38 simprr φu𝑘GenJxukneiJxJ𝑡kCompJ𝑡kComp
39 kgeni u𝑘GenJJ𝑡kCompukJ𝑡k
40 37 38 39 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompukJ𝑡k
41 vex kV
42 resttop JTopkVJ𝑡kTop
43 13 41 42 sylancl φu𝑘GenJxukneiJxJ𝑡kCompJ𝑡kTop
44 inss2 ukk
45 1 restuni JTopkXk=J𝑡k
46 13 19 45 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompk=J𝑡k
47 44 46 sseqtrid φu𝑘GenJxukneiJxJ𝑡kCompukJ𝑡k
48 eqid J𝑡k=J𝑡k
49 48 isopn3 J𝑡kTopukJ𝑡kukJ𝑡kintJ𝑡kuk=uk
50 43 47 49 syl2anc φu𝑘GenJxukneiJxJ𝑡kCompukJ𝑡kintJ𝑡kuk=uk
51 40 50 mpbid φu𝑘GenJxukneiJxJ𝑡kCompintJ𝑡kuk=uk
52 44 a1i φu𝑘GenJxukneiJxJ𝑡kCompukk
53 eqid J𝑡k=J𝑡k
54 1 53 restntr JTopkXukkintJ𝑡kuk=intJukXkk
55 13 19 52 54 syl3anc φu𝑘GenJxukneiJxJ𝑡kCompintJ𝑡kuk=intJukXkk
56 51 55 eqtr3d φu𝑘GenJxukneiJxJ𝑡kCompuk=intJukXkk
57 36 56 eleqtrd φu𝑘GenJxukneiJxJ𝑡kCompxintJukXkk
58 57 elin1d φu𝑘GenJxukneiJxJ𝑡kCompxintJukXk
59 undif3 ukXk=ukXkuk
60 incom uk=ku
61 60 difeq2i kuk=kku
62 difin kku=ku
63 61 62 eqtri kuk=ku
64 63 difeq2i ukXkuk=ukXku
65 59 64 eqtri ukXk=ukXku
66 44 19 sstrid φu𝑘GenJxukneiJxJ𝑡kCompukX
67 ssequn1 ukXukX=X
68 66 67 sylib φu𝑘GenJxukneiJxJ𝑡kCompukX=X
69 68 difeq1d φu𝑘GenJxukneiJxJ𝑡kCompukXku=Xku
70 65 69 eqtrid φu𝑘GenJxukneiJxJ𝑡kCompukXk=Xku
71 70 fveq2d φu𝑘GenJxukneiJxJ𝑡kCompintJukXk=intJXku
72 58 71 eleqtrd φu𝑘GenJxukneiJxJ𝑡kCompxintJXku
73 72 34 elind φu𝑘GenJxukneiJxJ𝑡kCompxintJXkuintJk
74 sslin intJkkintJXkuintJkintJXkuk
75 26 74 syl φu𝑘GenJxukneiJxJ𝑡kCompintJXkuintJkintJXkuk
76 1 ntrss2 JTopXkuXintJXkuXku
77 13 14 76 sylancl φu𝑘GenJxukneiJxJ𝑡kCompintJXkuXku
78 77 difss2d φu𝑘GenJxukneiJxJ𝑡kCompintJXkuX
79 reldisj intJXkuXintJXkuku=intJXkuXku
80 78 79 syl φu𝑘GenJxukneiJxJ𝑡kCompintJXkuku=intJXkuXku
81 77 80 mpbird φu𝑘GenJxukneiJxJ𝑡kCompintJXkuku=
82 inssdif0 intJXkukuintJXkuku=
83 81 82 sylibr φu𝑘GenJxukneiJxJ𝑡kCompintJXkuku
84 75 83 sstrd φu𝑘GenJxukneiJxJ𝑡kCompintJXkuintJku
85 eleq2 z=intJXkuintJkxzxintJXkuintJk
86 sseq1 z=intJXkuintJkzuintJXkuintJku
87 85 86 anbi12d z=intJXkuintJkxzzuxintJXkuintJkintJXkuintJku
88 87 rspcev intJXkuintJkJxintJXkuintJkintJXkuintJkuzJxzzu
89 23 73 84 88 syl12anc φu𝑘GenJxukneiJxJ𝑡kCompzJxzzu
90 12 89 rexlimddv φu𝑘GenJxuzJxzzu
91 90 ralrimiva φu𝑘GenJxuzJxzzu
92 91 ex φu𝑘GenJxuzJxzzu
93 eltop2 JTopuJxuzJxzzu
94 2 93 syl φuJxuzJxzzu
95 92 94 sylibrd φu𝑘GenJuJ
96 95 ssrdv φ𝑘GenJJ
97 iskgen2 Jran𝑘GenJTop𝑘GenJJ
98 2 96 97 sylanbrc φJran𝑘Gen