Metamath Proof Explorer


Theorem mclsax

Description: The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mclsval.d D=mDVT
mclsval.e E=mExT
mclsval.c C=mClsT
mclsval.1 φTmFS
mclsval.2 φKD
mclsval.3 φBE
mclsax.a A=mAxT
mclsax.l L=mSubstT
mclsax.v V=mVRT
mclsax.h H=mVHT
mclsax.w W=mVarsT
mclsax.4 φMOPA
mclsax.5 φSranL
mclsax.6 φxOSxKCB
mclsax.7 φvVSHvKCB
mclsax.8 φxMyaWSHxbWSHyaKb
Assertion mclsax φSPKCB

Proof

Step Hyp Ref Expression
1 mclsval.d D=mDVT
2 mclsval.e E=mExT
3 mclsval.c C=mClsT
4 mclsval.1 φTmFS
5 mclsval.2 φKD
6 mclsval.3 φBE
7 mclsax.a A=mAxT
8 mclsax.l L=mSubstT
9 mclsax.v V=mVRT
10 mclsax.h H=mVHT
11 mclsax.w W=mVarsT
12 mclsax.4 φMOPA
13 mclsax.5 φSranL
14 mclsax.6 φxOSxKCB
15 mclsax.7 φvVSHvKCB
16 mclsax.8 φxMyaWSHxbWSHyaKb
17 abid cc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspc
18 intss1 cc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc
19 17 18 sylbir BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc
20 1 2 3 4 5 6 10 7 8 11 mclsval φKCB=c|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspc
21 20 sseq1d φKCBcc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcc
22 19 21 imbitrrid φBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcKCBc
23 sstr2 soranHKCBKCBcsoranHc
24 23 com12 KCBcsoranHKCBsoranHc
25 24 anim1d KCBcsoranHKCBxyxmyWsHx×WsHyKsoranHcxyxmyWsHx×WsHyK
26 25 imim1d KCBcsoranHcxyxmyWsHx×WsHyKspcsoranHKCBxyxmyWsHx×WsHyKspc
27 26 ralimdv KCBcsranLsoranHcxyxmyWsHx×WsHyKspcsranLsoranHKCBxyxmyWsHx×WsHyKspc
28 27 imim2d KCBcmopAsranLsoranHcxyxmyWsHx×WsHyKspcmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
29 28 alimdv KCBcpmopAsranLsoranHcxyxmyWsHx×WsHyKspcpmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
30 29 2alimdv KCBcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
31 30 com12 mopmopAsranLsoranHcxyxmyWsHx×WsHyKspcKCBcmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
32 31 adantl BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcKCBcmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
33 22 32 sylcom φBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspc
34 eqid mPreStT=mPreStT
35 eqid mStatT=mStatT
36 34 35 mstapst mStatTmPreStT
37 7 35 maxsta TmFSAmStatT
38 4 37 syl φAmStatT
39 38 12 sseldd φMOPmStatT
40 36 39 sselid φMOPmPreStT
41 34 mpstrcl MOPmPreStTMVOVPV
42 simp1 m=Mo=Op=Pm=M
43 simp2 m=Mo=Op=Po=O
44 simp3 m=Mo=Op=Pp=P
45 42 43 44 oteq123d m=Mo=Op=Pmop=MOP
46 45 eleq1d m=Mo=Op=PmopAMOPA
47 43 uneq1d m=Mo=Op=PoranH=OranH
48 47 imaeq2d m=Mo=Op=PsoranH=sOranH
49 48 sseq1d m=Mo=Op=PsoranHKCBsOranHKCB
50 42 breqd m=Mo=Op=PxmyxMy
51 50 imbi1d m=Mo=Op=PxmyWsHx×WsHyKxMyWsHx×WsHyK
52 51 2albidv m=Mo=Op=PxyxmyWsHx×WsHyKxyxMyWsHx×WsHyK
53 49 52 anbi12d m=Mo=Op=PsoranHKCBxyxmyWsHx×WsHyKsOranHKCBxyxMyWsHx×WsHyK
54 44 fveq2d m=Mo=Op=Psp=sP
55 54 eleq1d m=Mo=Op=PspcsPc
56 53 55 imbi12d m=Mo=Op=PsoranHKCBxyxmyWsHx×WsHyKspcsOranHKCBxyxMyWsHx×WsHyKsPc
57 56 ralbidv m=Mo=Op=PsranLsoranHKCBxyxmyWsHx×WsHyKspcsranLsOranHKCBxyxMyWsHx×WsHyKsPc
58 46 57 imbi12d m=Mo=Op=PmopAsranLsoranHKCBxyxmyWsHx×WsHyKspcMOPAsranLsOranHKCBxyxMyWsHx×WsHyKsPc
59 58 spc3gv MVOVPVmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspcMOPAsranLsOranHKCBxyxMyWsHx×WsHyKsPc
60 40 41 59 3syl φmopmopAsranLsoranHKCBxyxmyWsHx×WsHyKspcMOPAsranLsOranHKCBxyxMyWsHx×WsHyKsPc
61 elun xOranHxOxranH
62 15 ralrimiva φvVSHvKCB
63 9 2 10 mvhf TmFSH:VE
64 4 63 syl φH:VE
65 ffn H:VEHFnV
66 fveq2 x=HvSx=SHv
67 66 eleq1d x=HvSxKCBSHvKCB
68 67 ralrn HFnVxranHSxKCBvVSHvKCB
69 64 65 68 3syl φxranHSxKCBvVSHvKCB
70 62 69 mpbird φxranHSxKCB
71 70 r19.21bi φxranHSxKCB
72 14 71 jaodan φxOxranHSxKCB
73 61 72 sylan2b φxOranHSxKCB
74 73 ralrimiva φxOranHSxKCB
75 8 2 msubf SranLS:EE
76 13 75 syl φS:EE
77 76 ffund φFunS
78 1 2 34 elmpst MOPmPreStTMDM-1=MOEOFinPE
79 40 78 sylib φMDM-1=MOEOFinPE
80 79 simp2d φOEOFin
81 80 simpld φOE
82 76 fdmd φdomS=E
83 81 82 sseqtrrd φOdomS
84 64 frnd φranHE
85 84 82 sseqtrrd φranHdomS
86 83 85 unssd φOranHdomS
87 funimass4 FunSOranHdomSSOranHKCBxOranHSxKCB
88 77 86 87 syl2anc φSOranHKCBxOranHSxKCB
89 74 88 mpbird φSOranHKCB
90 16 3exp2 φxMyaWSHxbWSHyaKb
91 90 imp4b φxMyaWSHxbWSHyaKb
92 91 ralrimivv φxMyaWSHxbWSHyaKb
93 dfss3 WSHx×WSHyKzWSHx×WSHyzK
94 eleq1 z=abzKabK
95 df-br aKbabK
96 94 95 bitr4di z=abzKaKb
97 96 ralxp zWSHx×WSHyzKaWSHxbWSHyaKb
98 93 97 bitri WSHx×WSHyKaWSHxbWSHyaKb
99 92 98 sylibr φxMyWSHx×WSHyK
100 99 ex φxMyWSHx×WSHyK
101 100 alrimivv φxyxMyWSHx×WSHyK
102 89 101 jca φSOranHKCBxyxMyWSHx×WSHyK
103 imaeq1 s=SsOranH=SOranH
104 103 sseq1d s=SsOranHKCBSOranHKCB
105 fveq1 s=SsHx=SHx
106 105 fveq2d s=SWsHx=WSHx
107 fveq1 s=SsHy=SHy
108 107 fveq2d s=SWsHy=WSHy
109 106 108 xpeq12d s=SWsHx×WsHy=WSHx×WSHy
110 109 sseq1d s=SWsHx×WsHyKWSHx×WSHyK
111 110 imbi2d s=SxMyWsHx×WsHyKxMyWSHx×WSHyK
112 111 2albidv s=SxyxMyWsHx×WsHyKxyxMyWSHx×WSHyK
113 104 112 anbi12d s=SsOranHKCBxyxMyWsHx×WsHyKSOranHKCBxyxMyWSHx×WSHyK
114 fveq1 s=SsP=SP
115 114 eleq1d s=SsPcSPc
116 113 115 imbi12d s=SsOranHKCBxyxMyWsHx×WsHyKsPcSOranHKCBxyxMyWSHx×WSHyKSPc
117 116 rspcv SranLsranLsOranHKCBxyxMyWsHx×WsHyKsPcSOranHKCBxyxMyWSHx×WSHyKSPc
118 13 117 syl φsranLsOranHKCBxyxMyWsHx×WsHyKsPcSOranHKCBxyxMyWSHx×WSHyKSPc
119 102 118 mpid φsranLsOranHKCBxyxMyWsHx×WsHyKsPcSPc
120 12 119 embantd φMOPAsranLsOranHKCBxyxMyWsHx×WsHyKsPcSPc
121 33 60 120 3syld φBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcSPc
122 121 alrimiv φcBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcSPc
123 fvex SPV
124 123 elintab SPc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspccBranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspcSPc
125 122 124 sylibr φSPc|BranHcmopmopAsranLsoranHcxyxmyWsHx×WsHyKspc
126 125 20 eleqtrrd φSPKCB