Metamath Proof Explorer


Theorem mullimcf

Description: Limit of the multiplication of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses mullimcf.f φF:A
mullimcf.g φG:A
mullimcf.h H=xAFxGx
mullimcf.b φBFlimD
mullimcf.c φCGlimD
Assertion mullimcf φBCHlimD

Proof

Step Hyp Ref Expression
1 mullimcf.f φF:A
2 mullimcf.g φG:A
3 mullimcf.h H=xAFxGx
4 mullimcf.b φBFlimD
5 mullimcf.c φCGlimD
6 limccl FlimD
7 6 4 sselid φB
8 limccl GlimD
9 8 5 sselid φC
10 7 9 mulcld φBC
11 simpr φw+w+
12 7 adantr φw+B
13 9 adantr φw+C
14 mulcn2 w+BCa+b+cdcB<adC<bcdBC<w
15 11 12 13 14 syl3anc φw+a+b+cdcB<adC<bcdBC<w
16 1 fdmd φdomF=A
17 limcrcl BFlimDF:domFdomFD
18 4 17 syl φF:domFdomFD
19 18 simp2d φdomF
20 16 19 eqsstrrd φA
21 18 simp3d φD
22 1 20 21 ellimc3 φBFlimDBa+e+zAzDzD<eFzB<a
23 4 22 mpbid φBa+e+zAzDzD<eFzB<a
24 23 simprd φa+e+zAzDzD<eFzB<a
25 24 r19.21bi φa+e+zAzDzD<eFzB<a
26 25 adantrr φa+b+e+zAzDzD<eFzB<a
27 2 20 21 ellimc3 φCGlimDCb+f+zAzDzD<fGzC<b
28 5 27 mpbid φCb+f+zAzDzD<fGzC<b
29 28 simprd φb+f+zAzDzD<fGzC<b
30 29 r19.21bi φb+f+zAzDzD<fGzC<b
31 30 adantrl φa+b+f+zAzDzD<fGzC<b
32 reeanv e+f+zAzDzD<eFzB<azAzDzD<fGzC<be+zAzDzD<eFzB<af+zAzDzD<fGzC<b
33 26 31 32 sylanbrc φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<b
34 ifcl e+f+ifefef+
35 34 3ad2ant2 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bifefef+
36 nfv zφa+b+
37 nfv ze+f+
38 nfra1 zzAzDzD<eFzB<a
39 nfra1 zzAzDzD<fGzC<b
40 38 39 nfan zzAzDzD<eFzB<azAzDzD<fGzC<b
41 36 37 40 nf3an zφa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<b
42 simp11l φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefφ
43 simp1rl φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<ba+
44 43 3ad2ant1 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefa+
45 42 44 jca φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefφa+
46 simp12 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefe+f+
47 simp13l φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefzAzDzD<eFzB<a
48 45 46 47 jca31 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefφa+e+f+zAzDzD<eFzB<a
49 simp1r φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzAzDzD<eFzB<a
50 simp2 φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzA
51 simp3l φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzD
52 simplll φa+e+f+zAzDzD<eFzB<aφ
53 52 3ad2ant1 φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefφ
54 simp1lr φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefe+f+
55 simp3r φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzD<ifefef
56 simp1l φe+f+zAzD<ifefefφ
57 simp2 φe+f+zAzD<ifefefzA
58 20 sselda φzAz
59 56 57 58 syl2anc φe+f+zAzD<ifefefz
60 56 21 syl φe+f+zAzD<ifefefD
61 59 60 subcld φe+f+zAzD<ifefefzD
62 61 abscld φe+f+zAzD<ifefefzD
63 rpre e+e
64 63 ad2antrl φe+f+e
65 64 3ad2ant1 φe+f+zAzD<ifefefe
66 rpre f+f
67 66 ad2antll φe+f+f
68 67 3ad2ant1 φe+f+zAzD<ifefeff
69 65 68 ifcld φe+f+zAzD<ifefefifefef
70 simp3 φe+f+zAzD<ifefefzD<ifefef
71 min1 efifefefe
72 65 68 71 syl2anc φe+f+zAzD<ifefefifefefe
73 62 69 65 70 72 ltletrd φe+f+zAzD<ifefefzD<e
74 53 54 50 55 73 syl211anc φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzD<e
75 51 74 jca φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefzDzD<e
76 rsp zAzDzD<eFzB<azAzDzD<eFzB<a
77 49 50 75 76 syl3c φa+e+f+zAzDzD<eFzB<azAzDzD<ifefefFzB<a
78 48 77 syld3an1 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefFzB<a
79 simp1l φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bφ
80 79 43 jca φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bφa+
81 simp2 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<be+f+
82 simp3r φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<fGzC<b
83 80 81 82 jca31 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bφa+e+f+zAzDzD<fGzC<b
84 simp1r φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzAzDzD<fGzC<b
85 simp2 φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzA
86 simp3l φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzD
87 simplll φa+e+f+zAzDzD<fGzC<bφ
88 87 3ad2ant1 φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefφ
89 simp1lr φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefe+f+
90 simp3r φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzD<ifefef
91 min2 efifefeff
92 65 68 91 syl2anc φe+f+zAzD<ifefefifefeff
93 62 69 68 70 92 ltletrd φe+f+zAzD<ifefefzD<f
94 88 89 85 90 93 syl211anc φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzD<f
95 86 94 jca φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefzDzD<f
96 rsp zAzDzD<fGzC<bzAzDzD<fGzC<b
97 84 85 95 96 syl3c φa+e+f+zAzDzD<fGzC<bzAzDzD<ifefefGzC<b
98 83 97 syl3an1 φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefGzC<b
99 78 98 jca φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefFzB<aGzC<b
100 99 3exp φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefFzB<aGzC<b
101 41 100 ralrimi φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<bzAzDzD<ifefefFzB<aGzC<b
102 brimralrspcev ifefef+zAzDzD<ifefefFzB<aGzC<by+zAzDzD<yFzB<aGzC<b
103 35 101 102 syl2anc φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<by+zAzDzD<yFzB<aGzC<b
104 103 3exp φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<by+zAzDzD<yFzB<aGzC<b
105 104 rexlimdvv φa+b+e+f+zAzDzD<eFzB<azAzDzD<fGzC<by+zAzDzD<yFzB<aGzC<b
106 33 105 mpd φa+b+y+zAzDzD<yFzB<aGzC<b
107 106 adantlr φw+a+b+y+zAzDzD<yFzB<aGzC<b
108 107 3adant3 φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<b
109 nfv zφw+a+b+cdcB<adC<bcdBC<wy+
110 nfra1 zzAzDzD<yFzB<aGzC<b
111 109 110 nfan zφw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<b
112 simp1l φw+a+b+cdcB<adC<bcdBC<wφ
113 112 ad2antrr φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bφ
114 113 3ad2ant1 φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yφ
115 simp2 φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yzA
116 fveq2 x=zFx=Fz
117 fveq2 x=zGx=Gz
118 116 117 oveq12d x=zFxGx=FzGz
119 simpr φzAzA
120 1 ffvelcdmda φzAFz
121 2 ffvelcdmda φzAGz
122 120 121 mulcld φzAFzGz
123 3 118 119 122 fvmptd3 φzAHz=FzGz
124 123 fvoveq1d φzAHzBC=FzGzBC
125 114 115 124 syl2anc φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yHzBC=FzGzBC
126 120 121 jca φzAFzGz
127 114 115 126 syl2anc φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yFzGz
128 simpll3 φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bcdcB<adC<bcdBC<w
129 128 3ad2ant1 φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<ycdcB<adC<bcdBC<w
130 rsp zAzDzD<yFzB<aGzC<bzAzDzD<yFzB<aGzC<b
131 130 3imp zAzDzD<yFzB<aGzC<bzAzDzD<yFzB<aGzC<b
132 131 3adant1l φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yFzB<aGzC<b
133 fvoveq1 c=FzcB=FzB
134 133 breq1d c=FzcB<aFzB<a
135 134 anbi1d c=FzcB<adC<bFzB<adC<b
136 oveq1 c=Fzcd=Fzd
137 136 fvoveq1d c=FzcdBC=FzdBC
138 137 breq1d c=FzcdBC<wFzdBC<w
139 135 138 imbi12d c=FzcB<adC<bcdBC<wFzB<adC<bFzdBC<w
140 fvoveq1 d=GzdC=GzC
141 140 breq1d d=GzdC<bGzC<b
142 141 anbi2d d=GzFzB<adC<bFzB<aGzC<b
143 oveq2 d=GzFzd=FzGz
144 143 fvoveq1d d=GzFzdBC=FzGzBC
145 144 breq1d d=GzFzdBC<wFzGzBC<w
146 142 145 imbi12d d=GzFzB<adC<bFzdBC<wFzB<aGzC<bFzGzBC<w
147 139 146 rspc2v FzGzcdcB<adC<bcdBC<wFzB<aGzC<bFzGzBC<w
148 127 129 132 147 syl3c φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yFzGzBC<w
149 125 148 eqbrtrd φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yHzBC<w
150 149 3exp φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yHzBC<w
151 111 150 ralrimi φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yHzBC<w
152 151 ex φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<bzAzDzD<yHzBC<w
153 152 reximdva φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yFzB<aGzC<by+zAzDzD<yHzBC<w
154 108 153 mpd φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yHzBC<w
155 154 3exp φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yHzBC<w
156 155 rexlimdvv φw+a+b+cdcB<adC<bcdBC<wy+zAzDzD<yHzBC<w
157 15 156 mpd φw+y+zAzDzD<yHzBC<w
158 157 ralrimiva φw+y+zAzDzD<yHzBC<w
159 1 ffvelcdmda φxAFx
160 2 ffvelcdmda φxAGx
161 159 160 mulcld φxAFxGx
162 161 3 fmptd φH:A
163 162 20 21 ellimc3 φBCHlimDBCw+y+zAzDzD<yHzBC<w
164 10 158 163 mpbir2and φBCHlimD