Metamath Proof Explorer


Theorem ovncvrrp

Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovncvrrp.x φ X Fin
ovncvrrp.n0 φ X
ovncvrrp.a φ A X
ovncvrrp.e φ E +
ovncvrrp.c C = a 𝒫 X l 2 X | a j k X . l j k
ovncvrrp.l L = h 2 X k X vol . h k
ovncvrrp.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
Assertion ovncvrrp φ i i D A E

Proof

Step Hyp Ref Expression
1 ovncvrrp.x φ X Fin
2 ovncvrrp.n0 φ X
3 ovncvrrp.a φ A X
4 ovncvrrp.e φ E +
5 ovncvrrp.c C = a 𝒫 X l 2 X | a j k X . l j k
6 ovncvrrp.l L = h 2 X k X vol . h k
7 ovncvrrp.d D = a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e
8 eqid z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
9 1 2 3 4 8 ovnlerp φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E
10 simp1 φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E φ
11 simp3 φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E z voln* X A + 𝑒 E
12 rabid z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k
13 12 biimpi z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k
14 13 simprd z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
15 14 adantr z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k
16 15 3adant1 φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k
17 nfv i φ z voln* X A + 𝑒 E
18 nfe1 i i i C A sum^ j L i j voln* X A + 𝑒 E
19 simp1l φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k φ
20 simp2 φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i 2 X
21 simp3l φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k
22 id i 2 X A j k X . i j k i 2 X A j k X . i j k
23 fveq1 l = i l j = i j
24 23 coeq2d l = i . l j = . i j
25 24 fveq1d l = i . l j k = . i j k
26 25 ixpeq2dv l = i k X . l j k = k X . i j k
27 26 iuneq2d l = i j k X . l j k = j k X . i j k
28 27 sseq2d l = i A j k X . l j k A j k X . i j k
29 28 elrab i l 2 X | A j k X . l j k i 2 X A j k X . i j k
30 22 29 sylibr i 2 X A j k X . i j k i l 2 X | A j k X . l j k
31 30 3adant1 φ i 2 X A j k X . i j k i l 2 X | A j k X . l j k
32 sseq1 a = A a j k X . l j k A j k X . l j k
33 32 rabbidv a = A l 2 X | a j k X . l j k = l 2 X | A j k X . l j k
34 ovexd φ X V
35 34 3 ssexd φ A V
36 elpwg A V A 𝒫 X A X
37 35 36 syl φ A 𝒫 X A X
38 3 37 mpbird φ A 𝒫 X
39 ovex 2 X V
40 39 rabex l 2 X | A j k X . l j k V
41 40 a1i φ l 2 X | A j k X . l j k V
42 5 33 38 41 fvmptd3 φ C A = l 2 X | A j k X . l j k
43 42 eqcomd φ l 2 X | A j k X . l j k = C A
44 43 3ad2ant1 φ i 2 X A j k X . i j k l 2 X | A j k X . l j k = C A
45 31 44 eleqtrd φ i 2 X A j k X . i j k i C A
46 19 20 21 45 syl3anc φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i C A
47 coeq2 h = i j . h = . i j
48 47 fveq1d h = i j . h k = . i j k
49 48 fveq2d h = i j vol . h k = vol . i j k
50 49 prodeq2ad h = i j k X vol . h k = k X vol . i j k
51 elmapi i 2 X i : 2 X
52 51 adantr i 2 X j i : 2 X
53 simpr i 2 X j j
54 52 53 ffvelrnd i 2 X j i j 2 X
55 prodex k X vol . i j k V
56 55 a1i i 2 X j k X vol . i j k V
57 6 50 54 56 fvmptd3 i 2 X j L i j = k X vol . i j k
58 57 mpteq2dva i 2 X j L i j = j k X vol . i j k
59 58 fveq2d i 2 X sum^ j L i j = sum^ j k X vol . i j k
60 59 adantr i 2 X z = sum^ j k X vol . i j k sum^ j L i j = sum^ j k X vol . i j k
61 id z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
62 61 eqcomd z = sum^ j k X vol . i j k sum^ j k X vol . i j k = z
63 62 adantl i 2 X z = sum^ j k X vol . i j k sum^ j k X vol . i j k = z
64 60 63 eqtrd i 2 X z = sum^ j k X vol . i j k sum^ j L i j = z
65 64 3adant1 z voln* X A + 𝑒 E i 2 X z = sum^ j k X vol . i j k sum^ j L i j = z
66 simp1 z voln* X A + 𝑒 E i 2 X z = sum^ j k X vol . i j k z voln* X A + 𝑒 E
67 65 66 eqbrtrd z voln* X A + 𝑒 E i 2 X z = sum^ j k X vol . i j k sum^ j L i j voln* X A + 𝑒 E
68 67 3adant1l φ z voln* X A + 𝑒 E i 2 X z = sum^ j k X vol . i j k sum^ j L i j voln* X A + 𝑒 E
69 68 3adant3l φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k sum^ j L i j voln* X A + 𝑒 E
70 46 69 jca φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i C A sum^ j L i j voln* X A + 𝑒 E
71 70 19.8ad φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i i C A sum^ j L i j voln* X A + 𝑒 E
72 71 3exp φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i i C A sum^ j L i j voln* X A + 𝑒 E
73 17 18 72 rexlimd φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i i C A sum^ j L i j voln* X A + 𝑒 E
74 73 imp φ z voln* X A + 𝑒 E i 2 X A j k X . i j k z = sum^ j k X vol . i j k i i C A sum^ j L i j voln* X A + 𝑒 E
75 10 11 16 74 syl21anc φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E i i C A sum^ j L i j voln* X A + 𝑒 E
76 75 3exp φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E i i C A sum^ j L i j voln* X A + 𝑒 E
77 76 rexlimdv φ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z voln* X A + 𝑒 E i i C A sum^ j L i j voln* X A + 𝑒 E
78 9 77 mpd φ i i C A sum^ j L i j voln* X A + 𝑒 E
79 rabid i i C A | sum^ j L i j voln* X A + 𝑒 E i C A sum^ j L i j voln* X A + 𝑒 E
80 79 bicomi i C A sum^ j L i j voln* X A + 𝑒 E i i C A | sum^ j L i j voln* X A + 𝑒 E
81 80 biimpi i C A sum^ j L i j voln* X A + 𝑒 E i i C A | sum^ j L i j voln* X A + 𝑒 E
82 81 adantl φ i C A sum^ j L i j voln* X A + 𝑒 E i i C A | sum^ j L i j voln* X A + 𝑒 E
83 nfcv _ b e + i C a | sum^ j L i j voln* X a + 𝑒 e
84 nfcv _ a +
85 nfv a sum^ j L i j voln* X b + 𝑒 e
86 nfmpt1 _ a a 𝒫 X l 2 X | a j k X . l j k
87 5 86 nfcxfr _ a C
88 nfcv _ a b
89 87 88 nffv _ a C b
90 85 89 nfrabw _ a i C b | sum^ j L i j voln* X b + 𝑒 e
91 84 90 nfmpt _ a e + i C b | sum^ j L i j voln* X b + 𝑒 e
92 fveq2 a = b C a = C b
93 92 eleq2d a = b i C a i C b
94 fveq2 a = b voln* X a = voln* X b
95 94 oveq1d a = b voln* X a + 𝑒 e = voln* X b + 𝑒 e
96 95 breq2d a = b sum^ j L i j voln* X a + 𝑒 e sum^ j L i j voln* X b + 𝑒 e
97 93 96 anbi12d a = b i C a sum^ j L i j voln* X a + 𝑒 e i C b sum^ j L i j voln* X b + 𝑒 e
98 97 rabbidva2 a = b i C a | sum^ j L i j voln* X a + 𝑒 e = i C b | sum^ j L i j voln* X b + 𝑒 e
99 98 mpteq2dv a = b e + i C a | sum^ j L i j voln* X a + 𝑒 e = e + i C b | sum^ j L i j voln* X b + 𝑒 e
100 83 91 99 cbvmpt a 𝒫 X e + i C a | sum^ j L i j voln* X a + 𝑒 e = b 𝒫 X e + i C b | sum^ j L i j voln* X b + 𝑒 e
101 7 100 eqtri D = b 𝒫 X e + i C b | sum^ j L i j voln* X b + 𝑒 e
102 fveq2 b = A C b = C A
103 102 eleq2d b = A i C b i C A
104 fveq2 b = A voln* X b = voln* X A
105 104 oveq1d b = A voln* X b + 𝑒 e = voln* X A + 𝑒 e
106 105 breq2d b = A sum^ j L i j voln* X b + 𝑒 e sum^ j L i j voln* X A + 𝑒 e
107 103 106 anbi12d b = A i C b sum^ j L i j voln* X b + 𝑒 e i C A sum^ j L i j voln* X A + 𝑒 e
108 107 rabbidva2 b = A i C b | sum^ j L i j voln* X b + 𝑒 e = i C A | sum^ j L i j voln* X A + 𝑒 e
109 108 mpteq2dv b = A e + i C b | sum^ j L i j voln* X b + 𝑒 e = e + i C A | sum^ j L i j voln* X A + 𝑒 e
110 38 adantr φ i C A sum^ j L i j voln* X A + 𝑒 E A 𝒫 X
111 rpex + V
112 111 mptex e + i C A | sum^ j L i j voln* X A + 𝑒 e V
113 112 a1i φ i C A sum^ j L i j voln* X A + 𝑒 E e + i C A | sum^ j L i j voln* X A + 𝑒 e V
114 101 109 110 113 fvmptd3 φ i C A sum^ j L i j voln* X A + 𝑒 E D A = e + i C A | sum^ j L i j voln* X A + 𝑒 e
115 oveq2 e = E voln* X A + 𝑒 e = voln* X A + 𝑒 E
116 115 breq2d e = E sum^ j L i j voln* X A + 𝑒 e sum^ j L i j voln* X A + 𝑒 E
117 116 rabbidv e = E i C A | sum^ j L i j voln* X A + 𝑒 e = i C A | sum^ j L i j voln* X A + 𝑒 E
118 117 adantl φ i C A sum^ j L i j voln* X A + 𝑒 E e = E i C A | sum^ j L i j voln* X A + 𝑒 e = i C A | sum^ j L i j voln* X A + 𝑒 E
119 4 adantr φ i C A sum^ j L i j voln* X A + 𝑒 E E +
120 fvex C A V
121 120 rabex i C A | sum^ j L i j voln* X A + 𝑒 E V
122 121 a1i φ i C A sum^ j L i j voln* X A + 𝑒 E i C A | sum^ j L i j voln* X A + 𝑒 E V
123 114 118 119 122 fvmptd φ i C A sum^ j L i j voln* X A + 𝑒 E D A E = i C A | sum^ j L i j voln* X A + 𝑒 E
124 123 eqcomd φ i C A sum^ j L i j voln* X A + 𝑒 E i C A | sum^ j L i j voln* X A + 𝑒 E = D A E
125 82 124 eleqtrd φ i C A sum^ j L i j voln* X A + 𝑒 E i D A E
126 125 ex φ i C A sum^ j L i j voln* X A + 𝑒 E i D A E
127 126 eximdv φ i i C A sum^ j L i j voln* X A + 𝑒 E i i D A E
128 78 127 mpd φ i i D A E