Metamath Proof Explorer


Theorem pcaddlem

Description: Lemma for pcadd . The original numbers A and B have been decomposed using the prime count function as ( P ^ M ) x. ( R / S ) where R , S are both not divisible by P and M = ( P pCnt A ) , and similarly for B . (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Hypotheses pcaddlem.1 φP
pcaddlem.2 φA=PMRS
pcaddlem.3 φB=PNTU
pcaddlem.4 φNM
pcaddlem.5 φR¬PR
pcaddlem.6 φS¬PS
pcaddlem.7 φT¬PT
pcaddlem.8 φU¬PU
Assertion pcaddlem φMPpCntA+B

Proof

Step Hyp Ref Expression
1 pcaddlem.1 φP
2 pcaddlem.2 φA=PMRS
3 pcaddlem.3 φB=PNTU
4 pcaddlem.4 φNM
5 pcaddlem.5 φR¬PR
6 pcaddlem.6 φS¬PS
7 pcaddlem.7 φT¬PT
8 pcaddlem.8 φU¬PU
9 oveq2 A+B=0PpCntA+B=PpCnt0
10 9 breq2d A+B=0MPpCntA+BMPpCnt0
11 eluzel2 NMM
12 4 11 syl φM
13 12 zred φM
14 13 adantr φA+B0M
15 prmnn PP
16 1 15 syl φP
17 16 nncnd φP
18 16 nnne0d φP0
19 eluzelz NMN
20 4 19 syl φN
21 20 12 zsubcld φNM
22 17 18 21 expclzd φPNM
23 7 simpld φT
24 23 zcnd φT
25 8 simpld φU
26 25 nncnd φU
27 25 nnne0d φU0
28 22 24 26 27 divassd φPNMTU=PNMTU
29 28 oveq2d φRS+PNMTU=RS+PNMTU
30 5 simpld φR
31 30 zcnd φR
32 6 simpld φS
33 32 nncnd φS
34 22 24 mulcld φPNMT
35 32 nnne0d φS0
36 31 33 34 26 35 27 divadddivd φRS+PNMTU=RU+PNMTSSU
37 29 36 eqtr3d φRS+PNMTU=RU+PNMTSSU
38 37 oveq2d φPpCntRS+PNMTU=PpCntRU+PNMTSSU
39 38 adantr φA+B0PpCntRS+PNMTU=PpCntRU+PNMTSSU
40 1 adantr φA+B0P
41 25 nnzd φU
42 30 41 zmulcld φRU
43 uznn0sub NMNM0
44 4 43 syl φNM0
45 16 44 nnexpcld φPNM
46 45 nnzd φPNM
47 46 23 zmulcld φPNMT
48 32 nnzd φS
49 47 48 zmulcld φPNMTS
50 42 49 zaddcld φRU+PNMTS
51 50 adantr φA+B0RU+PNMTS
52 17 18 12 expclzd φPM
53 52 mul01d φPM0=0
54 oveq2 RS+PNMTU=0PMRS+PNMTU=PM0
55 54 eqeq1d RS+PNMTU=0PMRS+PNMTU=0PM0=0
56 53 55 syl5ibrcom φRS+PNMTU=0PMRS+PNMTU=0
57 56 necon3d φPMRS+PNMTU0RS+PNMTU0
58 31 33 35 divcld φRS
59 24 26 27 divcld φTU
60 22 59 mulcld φPNMTU
61 52 58 60 adddid φPMRS+PNMTU=PMRS+PMPNMTU
62 12 zcnd φM
63 20 zcnd φN
64 62 63 pncan3d φM+N-M=N
65 64 oveq2d φPM+N-M=PN
66 expaddz PP0MNMPM+N-M=PMPNM
67 17 18 12 21 66 syl22anc φPM+N-M=PMPNM
68 65 67 eqtr3d φPN=PMPNM
69 68 oveq1d φPNTU=PMPNMTU
70 52 22 59 mulassd φPMPNMTU=PMPNMTU
71 3 69 70 3eqtrd φB=PMPNMTU
72 2 71 oveq12d φA+B=PMRS+PMPNMTU
73 61 72 eqtr4d φPMRS+PNMTU=A+B
74 73 neeq1d φPMRS+PNMTU0A+B0
75 37 neeq1d φRS+PNMTU0RU+PNMTSSU0
76 57 74 75 3imtr3d φA+B0RU+PNMTSSU0
77 32 25 nnmulcld φSU
78 77 nncnd φSU
79 77 nnne0d φSU0
80 78 79 div0d φ0SU=0
81 oveq1 RU+PNMTS=0RU+PNMTSSU=0SU
82 81 eqeq1d RU+PNMTS=0RU+PNMTSSU=00SU=0
83 80 82 syl5ibrcom φRU+PNMTS=0RU+PNMTSSU=0
84 83 necon3d φRU+PNMTSSU0RU+PNMTS0
85 76 84 syld φA+B0RU+PNMTS0
86 85 imp φA+B0RU+PNMTS0
87 77 adantr φA+B0SU
88 pcdiv PRU+PNMTSRU+PNMTS0SUPpCntRU+PNMTSSU=PpCntRU+PNMTSPpCntSU
89 40 51 86 87 88 syl121anc φA+B0PpCntRU+PNMTSSU=PpCntRU+PNMTSPpCntSU
90 pcmul PSS0UU0PpCntSU=PpCntS+PpCntU
91 1 48 35 41 27 90 syl122anc φPpCntSU=PpCntS+PpCntU
92 6 simprd φ¬PS
93 pceq0 PSPpCntS=0¬PS
94 1 32 93 syl2anc φPpCntS=0¬PS
95 92 94 mpbird φPpCntS=0
96 8 simprd φ¬PU
97 pceq0 PUPpCntU=0¬PU
98 1 25 97 syl2anc φPpCntU=0¬PU
99 96 98 mpbird φPpCntU=0
100 95 99 oveq12d φPpCntS+PpCntU=0+0
101 00id 0+0=0
102 100 101 eqtrdi φPpCntS+PpCntU=0
103 91 102 eqtrd φPpCntSU=0
104 103 oveq2d φPpCntRU+PNMTSPpCntSU=PpCntRU+PNMTS0
105 104 adantr φA+B0PpCntRU+PNMTSPpCntSU=PpCntRU+PNMTS0
106 pczcl PRU+PNMTSRU+PNMTS0PpCntRU+PNMTS0
107 40 51 86 106 syl12anc φA+B0PpCntRU+PNMTS0
108 107 nn0cnd φA+B0PpCntRU+PNMTS
109 108 subid1d φA+B0PpCntRU+PNMTS0=PpCntRU+PNMTS
110 105 109 eqtrd φA+B0PpCntRU+PNMTSPpCntSU=PpCntRU+PNMTS
111 39 89 110 3eqtrd φA+B0PpCntRS+PNMTU=PpCntRU+PNMTS
112 111 107 eqeltrd φA+B0PpCntRS+PNMTU0
113 nn0addge1 MPpCntRS+PNMTU0MM+PpCntRS+PNMTU
114 14 112 113 syl2anc φA+B0MM+PpCntRS+PNMTU
115 nnq PP
116 16 115 syl φP
117 qexpclz PP0MPM
118 116 18 12 117 syl3anc φPM
119 118 adantr φA+B0PM
120 17 18 12 expne0d φPM0
121 120 adantr φA+B0PM0
122 znq RSRS
123 30 32 122 syl2anc φRS
124 qexpclz PP0NMPNM
125 116 18 21 124 syl3anc φPNM
126 znq TUTU
127 23 25 126 syl2anc φTU
128 qmulcl PNMTUPNMTU
129 125 127 128 syl2anc φPNMTU
130 qaddcl RSPNMTURS+PNMTU
131 123 129 130 syl2anc φRS+PNMTU
132 131 adantr φA+B0RS+PNMTU
133 74 57 sylbird φA+B0RS+PNMTU0
134 133 imp φA+B0RS+PNMTU0
135 pcqmul PPMPM0RS+PNMTURS+PNMTU0PpCntPMRS+PNMTU=PpCntPM+PpCntRS+PNMTU
136 40 119 121 132 134 135 syl122anc φA+B0PpCntPMRS+PNMTU=PpCntPM+PpCntRS+PNMTU
137 73 oveq2d φPpCntPMRS+PNMTU=PpCntA+B
138 137 adantr φA+B0PpCntPMRS+PNMTU=PpCntA+B
139 pcid PMPpCntPM=M
140 1 12 139 syl2anc φPpCntPM=M
141 140 oveq1d φPpCntPM+PpCntRS+PNMTU=M+PpCntRS+PNMTU
142 141 adantr φA+B0PpCntPM+PpCntRS+PNMTU=M+PpCntRS+PNMTU
143 136 138 142 3eqtr3d φA+B0PpCntA+B=M+PpCntRS+PNMTU
144 114 143 breqtrrd φA+B0MPpCntA+B
145 13 rexrd φM*
146 pnfge M*M+∞
147 145 146 syl φM+∞
148 pc0 PPpCnt0=+∞
149 1 148 syl φPpCnt0=+∞
150 147 149 breqtrrd φMPpCnt0
151 10 144 150 pm2.61ne φMPpCntA+B