Metamath Proof Explorer


Theorem pm2mp

Description: The transformation of a sum of matrices having scaled monomials with the same power as entries into a sum of scaled monomials as a polynomial over matrices. (Contributed by AV, 12-Nov-2019) (Revised by AV, 7-Dec-2019)

Ref Expression
Hypotheses monmat2matmon.p P=Poly1R
monmat2matmon.c C=NMatP
monmat2matmon.b B=BaseC
monmat2matmon.m1 ˙=Q
monmat2matmon.e1 ×˙=mulGrpQ
monmat2matmon.x X=var1A
monmat2matmon.a A=NMatR
monmat2matmon.k K=BaseA
monmat2matmon.q Q=Poly1A
monmat2matmon.i I=NpMatToMatPolyR
monmat2matmon.e2 E=mulGrpP
monmat2matmon.y Y=var1R
monmat2matmon.m2 ·˙=C
monmat2matmon.t T=NmatToPolyMatR
Assertion pm2mp NFinRCRingMK0finSupp0AMICn0nEY·˙TMn=Qn0Mn˙n×˙X

Proof

Step Hyp Ref Expression
1 monmat2matmon.p P=Poly1R
2 monmat2matmon.c C=NMatP
3 monmat2matmon.b B=BaseC
4 monmat2matmon.m1 ˙=Q
5 monmat2matmon.e1 ×˙=mulGrpQ
6 monmat2matmon.x X=var1A
7 monmat2matmon.a A=NMatR
8 monmat2matmon.k K=BaseA
9 monmat2matmon.q Q=Poly1A
10 monmat2matmon.i I=NpMatToMatPolyR
11 monmat2matmon.e2 E=mulGrpP
12 monmat2matmon.y Y=var1R
13 monmat2matmon.m2 ·˙=C
14 monmat2matmon.t T=NmatToPolyMatR
15 eqid 0C=0C
16 crngring RCRingRRing
17 16 anim2i NFinRCRingNFinRRing
18 1 2 pmatring NFinRRingCRing
19 ringcmn CRingCCMnd
20 17 18 19 3syl NFinRCRingCCMnd
21 20 adantr NFinRCRingMK0finSupp0AMCCMnd
22 7 matring NFinRRingARing
23 16 22 sylan2 NFinRCRingARing
24 9 ply1ring ARingQRing
25 ringmnd QRingQMnd
26 23 24 25 3syl NFinRCRingQMnd
27 26 adantr NFinRCRingMK0finSupp0AMQMnd
28 nn0ex 0V
29 28 a1i NFinRCRingMK0finSupp0AM0V
30 eqid BaseQ=BaseQ
31 1 2 3 4 5 6 7 9 30 10 pm2mpghm NFinRRingICGrpHomQ
32 16 31 sylan2 NFinRCRingICGrpHomQ
33 32 adantr NFinRCRingMK0finSupp0AMICGrpHomQ
34 ghmmhm ICGrpHomQICMndHomQ
35 33 34 syl NFinRCRingMK0finSupp0AMICMndHomQ
36 17 adantr NFinRCRingMK0finSupp0AMNFinRRing
37 36 adantr NFinRCRingMK0finSupp0AMn0NFinRRing
38 elmapi MK0M:0K
39 38 adantr MK0finSupp0AMM:0K
40 39 adantl NFinRCRingMK0finSupp0AMM:0K
41 40 ffvelcdmda NFinRCRingMK0finSupp0AMn0MnK
42 simpr NFinRCRingMK0finSupp0AMn0n0
43 7 8 14 1 2 3 13 11 12 mat2pmatscmxcl NFinRRingMnKn0nEY·˙TMnB
44 37 41 42 43 syl12anc NFinRCRingMK0finSupp0AMn0nEY·˙TMnB
45 fvexd NFinRCRingMK0finSupp0AM0CV
46 ovexd NFinRCRingMK0finSupp0AMn0nEY·˙TMnV
47 simpr NFinRCRingMK0MK0
48 fvex 0AV
49 fsuppmapnn0ub MK00AVfinSupp0AMy0x0y<xMx=0A
50 47 48 49 sylancl NFinRCRingMK0finSupp0AMy0x0y<xMx=0A
51 csbov12g x0x/nnEY·˙TMn=x/nnEY·˙x/nTMn
52 csbov1g x0x/nnEY=x/nnEY
53 csbvarg x0x/nn=x
54 53 oveq1d x0x/nnEY=xEY
55 52 54 eqtrd x0x/nnEY=xEY
56 csbfv2g x0x/nTMn=Tx/nMn
57 csbfv2g x0x/nMn=Mx/nn
58 53 fveq2d x0Mx/nn=Mx
59 57 58 eqtrd x0x/nMn=Mx
60 59 fveq2d x0Tx/nMn=TMx
61 56 60 eqtrd x0x/nTMn=TMx
62 55 61 oveq12d x0x/nnEY·˙x/nTMn=xEY·˙TMx
63 51 62 eqtrd x0x/nnEY·˙TMn=xEY·˙TMx
64 63 adantl NFinRCRingMK0y0x0x/nnEY·˙TMn=xEY·˙TMx
65 64 adantr NFinRCRingMK0y0x0Mx=0Ax/nnEY·˙TMn=xEY·˙TMx
66 fveq2 Mx=0ATMx=T0A
67 66 oveq2d Mx=0AxEY·˙TMx=xEY·˙T0A
68 14 7 8 1 2 3 mat2pmatghm NFinRRingTAGrpHomC
69 16 68 sylan2 NFinRCRingTAGrpHomC
70 69 ad3antrrr NFinRCRingMK0y0x0TAGrpHomC
71 ghmmhm TAGrpHomCTAMndHomC
72 eqid 0A=0A
73 72 15 mhm0 TAMndHomCT0A=0C
74 70 71 73 3syl NFinRCRingMK0y0x0T0A=0C
75 74 oveq2d NFinRCRingMK0y0x0xEY·˙T0A=xEY·˙0C
76 1 ply1ring RRingPRing
77 16 76 syl RCRingPRing
78 2 matlmod NFinPRingCLMod
79 77 78 sylan2 NFinRCRingCLMod
80 79 ad3antrrr NFinRCRingMK0y0x0CLMod
81 eqid mulGrpP=mulGrpP
82 eqid BaseP=BaseP
83 81 82 mgpbas BaseP=BasemulGrpP
84 77 adantl NFinRCRingPRing
85 81 ringmgp PRingmulGrpPMnd
86 84 85 syl NFinRCRingmulGrpPMnd
87 86 ad3antrrr NFinRCRingMK0y0x0mulGrpPMnd
88 simpr NFinRCRingMK0y0x0x0
89 16 adantl NFinRCRingRRing
90 12 1 82 vr1cl RRingYBaseP
91 89 90 syl NFinRCRingYBaseP
92 91 ad3antrrr NFinRCRingMK0y0x0YBaseP
93 83 11 87 88 92 mulgnn0cld NFinRCRingMK0y0x0xEYBaseP
94 1 ply1crng RCRingPCRing
95 2 matsca2 NFinPCRingP=ScalarC
96 94 95 sylan2 NFinRCRingP=ScalarC
97 96 eqcomd NFinRCRingScalarC=P
98 97 ad3antrrr NFinRCRingMK0y0x0ScalarC=P
99 98 fveq2d NFinRCRingMK0y0x0BaseScalarC=BaseP
100 93 99 eleqtrrd NFinRCRingMK0y0x0xEYBaseScalarC
101 eqid ScalarC=ScalarC
102 eqid BaseScalarC=BaseScalarC
103 101 13 102 15 lmodvs0 CLModxEYBaseScalarCxEY·˙0C=0C
104 80 100 103 syl2anc NFinRCRingMK0y0x0xEY·˙0C=0C
105 75 104 eqtrd NFinRCRingMK0y0x0xEY·˙T0A=0C
106 67 105 sylan9eqr NFinRCRingMK0y0x0Mx=0AxEY·˙TMx=0C
107 65 106 eqtrd NFinRCRingMK0y0x0Mx=0Ax/nnEY·˙TMn=0C
108 107 ex NFinRCRingMK0y0x0Mx=0Ax/nnEY·˙TMn=0C
109 108 imim2d NFinRCRingMK0y0x0y<xMx=0Ay<xx/nnEY·˙TMn=0C
110 109 ralimdva NFinRCRingMK0y0x0y<xMx=0Ax0y<xx/nnEY·˙TMn=0C
111 110 reximdva NFinRCRingMK0y0x0y<xMx=0Ay0x0y<xx/nnEY·˙TMn=0C
112 50 111 syld NFinRCRingMK0finSupp0AMy0x0y<xx/nnEY·˙TMn=0C
113 112 impr NFinRCRingMK0finSupp0AMy0x0y<xx/nnEY·˙TMn=0C
114 45 46 113 mptnn0fsupp NFinRCRingMK0finSupp0AMfinSupp0Cn0nEY·˙TMn
115 3 15 21 27 29 35 44 114 gsummptmhm NFinRCRingMK0finSupp0AMQn0InEY·˙TMn=ICn0nEY·˙TMn
116 simpll NFinRCRingMK0finSupp0AMn0NFinRCRing
117 1 2 3 4 5 6 7 8 9 10 11 12 13 14 monmat2matmon NFinRCRingMnKn0InEY·˙TMn=Mn˙n×˙X
118 116 41 42 117 syl12anc NFinRCRingMK0finSupp0AMn0InEY·˙TMn=Mn˙n×˙X
119 118 mpteq2dva NFinRCRingMK0finSupp0AMn0InEY·˙TMn=n0Mn˙n×˙X
120 119 oveq2d NFinRCRingMK0finSupp0AMQn0InEY·˙TMn=Qn0Mn˙n×˙X
121 115 120 eqtr3d NFinRCRingMK0finSupp0AMICn0nEY·˙TMn=Qn0Mn˙n×˙X