Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
The Prime Number Theorem
pntrlog2bndlem1
Next ⟩
pntrlog2bndlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
pntrlog2bndlem1
Description:
The sum of
selberg3r
and
selberg4r
.
(Contributed by
Mario Carneiro
, 31-May-2016)
Ref
Expression
Hypotheses
pntsval.1
⊢
S
=
a
∈
ℝ
⟼
∑
i
=
1
a
Λ
i
log
i
+
ψ
a
i
pntrlog2bnd.r
⊢
R
=
a
∈
ℝ
+
⟼
ψ
a
−
a
Assertion
pntrlog2bndlem1
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
∈
≤
𝑂
1
Proof
Step
Hyp
Ref
Expression
1
pntsval.1
⊢
S
=
a
∈
ℝ
⟼
∑
i
=
1
a
Λ
i
log
i
+
ψ
a
i
2
pntrlog2bnd.r
⊢
R
=
a
∈
ℝ
+
⟼
ψ
a
−
a
3
1red
⊢
⊤
→
1
∈
ℝ
4
2
selberg34r
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
𝑂
1
5
elioore
⊢
x
∈
1
+∞
→
x
∈
ℝ
6
5
adantl
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℝ
7
1rp
⊢
1
∈
ℝ
+
8
7
a1i
⊢
⊤
∧
x
∈
1
+∞
→
1
∈
ℝ
+
9
1red
⊢
⊤
∧
x
∈
1
+∞
→
1
∈
ℝ
10
eliooord
⊢
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
11
10
adantl
⊢
⊤
∧
x
∈
1
+∞
→
1
<
x
∧
x
<
+∞
12
11
simpld
⊢
⊤
∧
x
∈
1
+∞
→
1
<
x
13
9
6
12
ltled
⊢
⊤
∧
x
∈
1
+∞
→
1
≤
x
14
6
8
13
rpgecld
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℝ
+
15
2
pntrf
⊢
R
:
ℝ
+
⟶
ℝ
16
15
ffvelcdmi
⊢
x
∈
ℝ
+
→
R
x
∈
ℝ
17
14
16
syl
⊢
⊤
∧
x
∈
1
+∞
→
R
x
∈
ℝ
18
14
relogcld
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℝ
19
17
18
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
∈
ℝ
20
fzfid
⊢
⊤
∧
x
∈
1
+∞
→
1
…
x
∈
Fin
21
14
adantr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
∈
ℝ
+
22
elfznn
⊢
n
∈
1
…
x
→
n
∈
ℕ
23
22
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℕ
24
23
nnrpd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℝ
+
25
21
24
rpdivcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
x
n
∈
ℝ
+
26
15
ffvelcdmi
⊢
x
n
∈
ℝ
+
→
R
x
n
∈
ℝ
27
25
26
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∈
ℝ
28
fzfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
…
n
∈
Fin
29
dvdsssfz1
⊢
n
∈
ℕ
→
y
∈
ℕ
|
y
∥
n
⊆
1
…
n
30
23
29
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
y
∈
ℕ
|
y
∥
n
⊆
1
…
n
31
28
30
ssfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
y
∈
ℕ
|
y
∥
n
∈
Fin
32
ssrab2
⊢
y
∈
ℕ
|
y
∥
n
⊆
ℕ
33
simpr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
m
∈
y
∈
ℕ
|
y
∥
n
34
32
33
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
m
∈
ℕ
35
vmacl
⊢
m
∈
ℕ
→
Λ
m
∈
ℝ
36
34
35
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
∈
ℝ
37
dvdsdivcl
⊢
n
∈
ℕ
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
y
∈
ℕ
|
y
∥
n
38
23
37
sylan
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
y
∈
ℕ
|
y
∥
n
39
32
38
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
n
m
∈
ℕ
40
vmacl
⊢
n
m
∈
ℕ
→
Λ
n
m
∈
ℝ
41
39
40
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
n
m
∈
ℝ
42
36
41
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
Λ
n
m
∈
ℝ
43
31
42
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
∈
ℝ
44
vmacl
⊢
n
∈
ℕ
→
Λ
n
∈
ℝ
45
23
44
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
∈
ℝ
46
24
relogcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
log
n
∈
ℝ
47
45
46
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
log
n
∈
ℝ
48
43
47
resubcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
49
27
48
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
50
20
49
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
51
6
12
rplogcld
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℝ
+
52
50
51
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
53
19
52
resubcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
54
53
14
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
ℝ
55
54
recnd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
ℂ
56
55
lo1o12
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
𝑂
1
↔
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
≤
𝑂
1
57
4
56
mpbii
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
≤
𝑂
1
58
55
abscld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
∈
ℝ
59
17
recnd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
∈
ℂ
60
59
abscld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
∈
ℝ
61
60
18
remulcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
∈
ℝ
62
27
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∈
ℂ
63
62
abscld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∈
ℝ
64
23
nnred
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℝ
65
1
pntsf
⊢
S
:
ℝ
⟶
ℝ
66
65
ffvelcdmi
⊢
n
∈
ℝ
→
S
n
∈
ℝ
67
64
66
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
∈
ℝ
68
1red
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
∈
ℝ
69
64
68
resubcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
−
1
∈
ℝ
70
65
ffvelcdmi
⊢
n
−
1
∈
ℝ
→
S
n
−
1
∈
ℝ
71
69
70
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
∈
ℝ
72
67
71
resubcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
S
n
−
1
∈
ℝ
73
63
72
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
S
n
−
S
n
−
1
∈
ℝ
74
20
73
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
∈
ℝ
75
74
51
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
∈
ℝ
76
61
75
resubcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
∈
ℝ
77
76
14
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
∈
ℝ
78
18
recnd
⊢
⊤
∧
x
∈
1
+∞
→
log
x
∈
ℂ
79
59
78
mulcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
∈
ℂ
80
50
recnd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
81
51
rpne0d
⊢
⊤
∧
x
∈
1
+∞
→
log
x
≠
0
82
80
78
81
divcld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℂ
83
79
82
subcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℂ
84
83
abscld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
85
80
abscld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
86
85
51
rerpdivcld
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
87
61
86
resubcld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℝ
88
49
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
89
88
abscld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
90
20
89
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
91
20
88
fsumabs
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
92
48
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℂ
93
62
92
absmuld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
=
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
94
92
abscld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
∈
ℝ
95
62
absge0d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
R
x
n
96
43
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
∈
ℂ
97
47
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
log
n
∈
ℂ
98
96
97
abs2dif2d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
99
71
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
∈
ℂ
100
96
97
addcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
∈
ℂ
101
99
100
pncan2d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
-
S
n
−
1
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
102
elfzuz
⊢
n
∈
1
…
x
→
n
∈
ℤ
≥
1
103
102
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℤ
≥
1
104
elfznn
⊢
k
∈
1
…
n
→
k
∈
ℕ
105
104
adantl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
k
∈
ℕ
106
vmacl
⊢
k
∈
ℕ
→
Λ
k
∈
ℝ
107
105
106
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
Λ
k
∈
ℝ
108
105
nnrpd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
k
∈
ℝ
+
109
108
relogcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
log
k
∈
ℝ
110
107
109
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
Λ
k
log
k
∈
ℝ
111
fzfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
1
…
k
∈
Fin
112
dvdsssfz1
⊢
k
∈
ℕ
→
y
∈
ℕ
|
y
∥
k
⊆
1
…
k
113
105
112
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
y
∈
ℕ
|
y
∥
k
⊆
1
…
k
114
111
113
ssfid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
y
∈
ℕ
|
y
∥
k
∈
Fin
115
ssrab2
⊢
y
∈
ℕ
|
y
∥
k
⊆
ℕ
116
simpr
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
m
∈
y
∈
ℕ
|
y
∥
k
117
115
116
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
m
∈
ℕ
118
117
35
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
Λ
m
∈
ℝ
119
dvdsdivcl
⊢
k
∈
ℕ
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
k
m
∈
y
∈
ℕ
|
y
∥
k
120
105
119
sylan
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
k
m
∈
y
∈
ℕ
|
y
∥
k
121
115
120
sselid
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
k
m
∈
ℕ
122
vmacl
⊢
k
m
∈
ℕ
→
Λ
k
m
∈
ℝ
123
121
122
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
Λ
k
m
∈
ℝ
124
118
123
remulcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
∧
m
∈
y
∈
ℕ
|
y
∥
k
→
Λ
m
Λ
k
m
∈
ℝ
125
114
124
fsumrecl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
∈
ℝ
126
110
125
readdcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
∈
ℝ
127
126
recnd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
k
∈
1
…
n
→
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
∈
ℂ
128
fveq2
⊢
k
=
n
→
Λ
k
=
Λ
n
129
fveq2
⊢
k
=
n
→
log
k
=
log
n
130
128
129
oveq12d
⊢
k
=
n
→
Λ
k
log
k
=
Λ
n
log
n
131
breq2
⊢
k
=
n
→
y
∥
k
↔
y
∥
n
132
131
rabbidv
⊢
k
=
n
→
y
∈
ℕ
|
y
∥
k
=
y
∈
ℕ
|
y
∥
n
133
fvoveq1
⊢
k
=
n
→
Λ
k
m
=
Λ
n
m
134
133
oveq2d
⊢
k
=
n
→
Λ
m
Λ
k
m
=
Λ
m
Λ
n
m
135
134
adantr
⊢
k
=
n
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
Λ
m
Λ
k
m
=
Λ
m
Λ
n
m
136
132
135
sumeq12rdv
⊢
k
=
n
→
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
137
130
136
oveq12d
⊢
k
=
n
→
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
=
Λ
n
log
n
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
138
103
127
137
fsumm1
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
+
Λ
n
log
n
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
139
1
pntsval2
⊢
n
∈
ℝ
→
S
n
=
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
140
64
139
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
=
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
141
23
nnzd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
∈
ℤ
142
flid
⊢
n
∈
ℤ
→
n
=
n
143
141
142
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
=
n
144
143
oveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
…
n
=
1
…
n
145
144
sumeq1d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
=
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
146
140
145
eqtrd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
=
∑
k
=
1
n
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
147
1
pntsval2
⊢
n
−
1
∈
ℝ
→
S
n
−
1
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
148
69
147
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
149
1zzd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
∈
ℤ
150
141
149
zsubcld
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
−
1
∈
ℤ
151
flid
⊢
n
−
1
∈
ℤ
→
n
−
1
=
n
−
1
152
150
151
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
n
−
1
=
n
−
1
153
152
oveq2d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
…
n
−
1
=
1
…
n
−
1
154
153
sumeq1d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
155
148
154
eqtrd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
156
96
97
addcomd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
=
Λ
n
log
n
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
157
155
156
oveq12d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
1
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
=
∑
k
=
1
n
−
1
Λ
k
log
k
+
∑
m
∈
y
∈
ℕ
|
y
∥
k
Λ
m
Λ
k
m
+
Λ
n
log
n
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
158
138
146
157
3eqtr4d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
=
S
n
−
1
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
159
158
oveq1d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
S
n
−
1
=
S
n
−
1
+
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
-
S
n
−
1
160
vmage0
⊢
m
∈
ℕ
→
0
≤
Λ
m
161
34
160
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
0
≤
Λ
m
162
vmage0
⊢
n
m
∈
ℕ
→
0
≤
Λ
n
m
163
39
162
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
0
≤
Λ
n
m
164
36
41
161
163
mulge0d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
∧
m
∈
y
∈
ℕ
|
y
∥
n
→
0
≤
Λ
m
Λ
n
m
165
31
42
164
fsumge0
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
166
43
165
absidd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
167
vmage0
⊢
n
∈
ℕ
→
0
≤
Λ
n
168
23
167
syl
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
Λ
n
169
23
nnge1d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
1
≤
n
170
64
169
logge0d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
log
n
171
45
46
168
170
mulge0d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
0
≤
Λ
n
log
n
172
47
171
absidd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
Λ
n
log
n
=
Λ
n
log
n
173
166
172
oveq12d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
174
101
159
173
3eqtr4d
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
S
n
−
S
n
−
1
=
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
+
Λ
n
log
n
175
98
174
breqtrrd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
S
n
−
S
n
−
1
176
94
72
63
95
175
lemul2ad
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
R
x
n
S
n
−
S
n
−
1
177
93
176
eqbrtrd
⊢
⊤
∧
x
∈
1
+∞
∧
n
∈
1
…
x
→
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
R
x
n
S
n
−
S
n
−
1
178
20
89
73
177
fsumle
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
179
85
90
74
91
178
letrd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
≤
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
180
85
74
51
179
lediv1dd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
≤
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
181
86
75
61
180
lesub2dd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
182
59
78
absmuld
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
=
R
x
log
x
183
6
13
logge0d
⊢
⊤
∧
x
∈
1
+∞
→
0
≤
log
x
184
18
183
absidd
⊢
⊤
∧
x
∈
1
+∞
→
log
x
=
log
x
185
184
oveq2d
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
=
R
x
log
x
186
182
185
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
=
R
x
log
x
187
80
78
81
absdivd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
188
184
oveq2d
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
189
187
188
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
=
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
190
186
189
oveq12d
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
191
79
82
abs2difd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
192
190
191
eqbrtrrd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
193
76
87
84
181
192
letrd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
194
76
84
14
193
lediv1dd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
195
53
recnd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
∈
ℂ
196
6
recnd
⊢
⊤
∧
x
∈
1
+∞
→
x
∈
ℂ
197
14
rpne0d
⊢
⊤
∧
x
∈
1
+∞
→
x
≠
0
198
195
196
197
absdivd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
199
14
rpge0d
⊢
⊤
∧
x
∈
1
+∞
→
0
≤
x
200
6
199
absidd
⊢
⊤
∧
x
∈
1
+∞
→
x
=
x
201
200
oveq2d
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
202
198
201
eqtrd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
=
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
203
194
202
breqtrrd
⊢
⊤
∧
x
∈
1
+∞
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
204
203
adantrr
⊢
⊤
∧
x
∈
1
+∞
∧
1
≤
x
→
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
≤
R
x
log
x
−
∑
n
=
1
x
R
x
n
∑
m
∈
y
∈
ℕ
|
y
∥
n
Λ
m
Λ
n
m
−
Λ
n
log
n
log
x
x
205
3
57
58
77
204
lo1le
⊢
⊤
→
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
∈
≤
𝑂
1
206
205
mptru
⊢
x
∈
1
+∞
⟼
R
x
log
x
−
∑
n
=
1
x
R
x
n
S
n
−
S
n
−
1
log
x
x
∈
≤
𝑂
1