Metamath Proof Explorer


Theorem prdsbnd

Description: The product metric over finite index set is bounded if all the factors are bounded. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses prdsbnd.y Y=S𝑠R
prdsbnd.b B=BaseY
prdsbnd.v V=BaseRx
prdsbnd.e E=distRxV×V
prdsbnd.d D=distY
prdsbnd.s φSW
prdsbnd.i φIFin
prdsbnd.r φRFnI
prdsbnd.m φxIEBndV
Assertion prdsbnd φDBndB

Proof

Step Hyp Ref Expression
1 prdsbnd.y Y=S𝑠R
2 prdsbnd.b B=BaseY
3 prdsbnd.v V=BaseRx
4 prdsbnd.e E=distRxV×V
5 prdsbnd.d D=distY
6 prdsbnd.s φSW
7 prdsbnd.i φIFin
8 prdsbnd.r φRFnI
9 prdsbnd.m φxIEBndV
10 eqid S𝑠xIRx=S𝑠xIRx
11 eqid BaseS𝑠xIRx=BaseS𝑠xIRx
12 eqid distS𝑠xIRx=distS𝑠xIRx
13 fvexd φxIRxV
14 bndmet EBndVEMetV
15 9 14 syl φxIEMetV
16 10 11 3 4 12 6 7 13 15 prdsmet φdistS𝑠xIRxMetBaseS𝑠xIRx
17 dffn5 RFnIR=xIRx
18 8 17 sylib φR=xIRx
19 18 oveq2d φS𝑠R=S𝑠xIRx
20 1 19 eqtrid φY=S𝑠xIRx
21 20 fveq2d φdistY=distS𝑠xIRx
22 5 21 eqtrid φD=distS𝑠xIRx
23 20 fveq2d φBaseY=BaseS𝑠xIRx
24 2 23 eqtrid φB=BaseS𝑠xIRx
25 24 fveq2d φMetB=MetBaseS𝑠xIRx
26 16 22 25 3eltr4d φDMetB
27 isbnd3 EBndVEMetVwE:V×V0w
28 27 simprbi EBndVwE:V×V0w
29 9 28 syl φxIwE:V×V0w
30 29 ralrimiva φxIwE:V×V0w
31 oveq2 w=kx0w=0kx
32 31 feq3d w=kxE:V×V0wE:V×V0kx
33 32 ac6sfi IFinxIwE:V×V0wkk:IxIE:V×V0kx
34 7 30 33 syl2anc φkk:IxIE:V×V0kx
35 frn k:Irank
36 35 adantl φk:Irank
37 0red φ0
38 37 snssd φ0
39 38 adantr φk:I0
40 36 39 unssd φk:Irank0
41 ffn k:IkFnI
42 dffn4 kFnIk:Iontorank
43 41 42 sylib k:Ik:Iontorank
44 fofi IFink:IontorankrankFin
45 7 43 44 syl2an φk:IrankFin
46 snfi 0Fin
47 unfi rankFin0Finrank0Fin
48 45 46 47 sylancl φk:Irank0Fin
49 ssun2 0rank0
50 c0ex 0V
51 50 snid 00
52 49 51 sselii 0rank0
53 ne0i 0rank0rank0
54 52 53 mp1i φk:Irank0
55 ltso <Or
56 fisupcl <Orrank0Finrank0rank0suprank0<rank0
57 55 56 mpan rank0Finrank0rank0suprank0<rank0
58 48 54 40 57 syl3anc φk:Isuprank0<rank0
59 40 58 sseldd φk:Isuprank0<
60 59 adantrr φk:IxIE:V×V0kxsuprank0<
61 metf DMetBD:B×B
62 ffn D:B×BDFnB×B
63 26 61 62 3syl φDFnB×B
64 63 adantr φk:IxIE:V×V0kxDFnB×B
65 26 ad2antrr φfBgBk:IxIE:V×V0kxDMetB
66 simprl φfBgBfB
67 66 adantr φfBgBk:IxIE:V×V0kxfB
68 simprr φfBgBgB
69 68 adantr φfBgBk:IxIE:V×V0kxgB
70 metcl DMetBfBgBfDg
71 65 67 69 70 syl3anc φfBgBk:IxIE:V×V0kxfDg
72 metge0 DMetBfBgB0fDg
73 65 67 69 72 syl3anc φfBgBk:IxIE:V×V0kx0fDg
74 22 oveqdr φfBgBfDg=fdistS𝑠xIRxg
75 6 adantr φfBgBSW
76 7 adantr φfBgBIFin
77 fvexd φfBgBxIRxV
78 77 ralrimiva φfBgBxIRxV
79 24 adantr φfBgBB=BaseS𝑠xIRx
80 66 79 eleqtrd φfBgBfBaseS𝑠xIRx
81 68 79 eleqtrd φfBgBgBaseS𝑠xIRx
82 10 11 75 76 78 80 81 3 4 12 prdsdsval3 φfBgBfdistS𝑠xIRxg=supranxIfxEgx0*<
83 74 82 eqtrd φfBgBfDg=supranxIfxEgx0*<
84 83 adantr φfBgBk:IxIE:V×V0kxfDg=supranxIfxEgx0*<
85 15 adantlr φfBgBxIEMetV
86 10 11 75 76 78 3 80 prdsbascl φfBgBxIfxV
87 86 r19.21bi φfBgBxIfxV
88 10 11 75 76 78 3 81 prdsbascl φfBgBxIgxV
89 88 r19.21bi φfBgBxIgxV
90 metcl EMetVfxVgxVfxEgx
91 85 87 89 90 syl3anc φfBgBxIfxEgx
92 91 ad2ant2r φfBgBk:IxIE:V×V0kxfxEgx
93 ffvelcdm k:IxIkx
94 93 ad2ant2lr φfBgBk:IxIE:V×V0kxkx
95 59 adantlr φfBgBk:Isuprank0<
96 95 adantr φfBgBk:IxIE:V×V0kxsuprank0<
97 simprr φfBgBk:IxIE:V×V0kxE:V×V0kx
98 87 ad2ant2r φfBgBk:IxIE:V×V0kxfxV
99 89 ad2ant2r φfBgBk:IxIE:V×V0kxgxV
100 97 98 99 fovcdmd φfBgBk:IxIE:V×V0kxfxEgx0kx
101 0re 0
102 elicc2 0kxfxEgx0kxfxEgx0fxEgxfxEgxkx
103 101 94 102 sylancr φfBgBk:IxIE:V×V0kxfxEgx0kxfxEgx0fxEgxfxEgxkx
104 100 103 mpbid φfBgBk:IxIE:V×V0kxfxEgx0fxEgxfxEgxkx
105 104 simp3d φfBgBk:IxIE:V×V0kxfxEgxkx
106 40 adantlr φfBgBk:Irank0
107 106 adantr φfBgBk:IxIE:V×V0kxrank0
108 52 53 mp1i φfBgBk:IxIE:V×V0kxrank0
109 fimaxre2 rank0rank0Finzwrank0wz
110 40 48 109 syl2anc φk:Izwrank0wz
111 110 adantlr φfBgBk:Izwrank0wz
112 111 adantr φfBgBk:IxIE:V×V0kxzwrank0wz
113 ssun1 rankrank0
114 41 ad2antlr φfBgBk:IxIE:V×V0kxkFnI
115 simprl φfBgBk:IxIE:V×V0kxxI
116 fnfvelrn kFnIxIkxrank
117 114 115 116 syl2anc φfBgBk:IxIE:V×V0kxkxrank
118 113 117 sselid φfBgBk:IxIE:V×V0kxkxrank0
119 suprub rank0rank0zwrank0wzkxrank0kxsuprank0<
120 107 108 112 118 119 syl31anc φfBgBk:IxIE:V×V0kxkxsuprank0<
121 92 94 96 105 120 letrd φfBgBk:IxIE:V×V0kxfxEgxsuprank0<
122 121 expr φfBgBk:IxIE:V×V0kxfxEgxsuprank0<
123 122 ralimdva φfBgBk:IxIE:V×V0kxxIfxEgxsuprank0<
124 123 impr φfBgBk:IxIE:V×V0kxxIfxEgxsuprank0<
125 ovex fxEgxV
126 125 rgenw xIfxEgxV
127 eqid xIfxEgx=xIfxEgx
128 breq1 w=fxEgxwsuprank0<fxEgxsuprank0<
129 127 128 ralrnmptw xIfxEgxVwranxIfxEgxwsuprank0<xIfxEgxsuprank0<
130 126 129 ax-mp wranxIfxEgxwsuprank0<xIfxEgxsuprank0<
131 124 130 sylibr φfBgBk:IxIE:V×V0kxwranxIfxEgxwsuprank0<
132 40 ad2ant2r φfBgBk:IxIE:V×V0kxrank0
133 52 53 mp1i φfBgBk:IxIE:V×V0kxrank0
134 110 ad2ant2r φfBgBk:IxIE:V×V0kxzwrank0wz
135 52 a1i φfBgBk:IxIE:V×V0kx0rank0
136 suprub rank0rank0zwrank0wz0rank00suprank0<
137 132 133 134 135 136 syl31anc φfBgBk:IxIE:V×V0kx0suprank0<
138 elsni w0w=0
139 138 breq1d w0wsuprank0<0suprank0<
140 137 139 syl5ibrcom φfBgBk:IxIE:V×V0kxw0wsuprank0<
141 140 ralrimiv φfBgBk:IxIE:V×V0kxw0wsuprank0<
142 ralunb wranxIfxEgx0wsuprank0<wranxIfxEgxwsuprank0<w0wsuprank0<
143 131 141 142 sylanbrc φfBgBk:IxIE:V×V0kxwranxIfxEgx0wsuprank0<
144 91 fmpttd φfBgBxIfxEgx:I
145 144 frnd φfBgBranxIfxEgx
146 0red φfBgB0
147 146 snssd φfBgB0
148 145 147 unssd φfBgBranxIfxEgx0
149 ressxr *
150 148 149 sstrdi φfBgBranxIfxEgx0*
151 150 adantr φfBgBk:IxIE:V×V0kxranxIfxEgx0*
152 60 adantlr φfBgBk:IxIE:V×V0kxsuprank0<
153 152 rexrd φfBgBk:IxIE:V×V0kxsuprank0<*
154 supxrleub ranxIfxEgx0*suprank0<*supranxIfxEgx0*<suprank0<wranxIfxEgx0wsuprank0<
155 151 153 154 syl2anc φfBgBk:IxIE:V×V0kxsupranxIfxEgx0*<suprank0<wranxIfxEgx0wsuprank0<
156 143 155 mpbird φfBgBk:IxIE:V×V0kxsupranxIfxEgx0*<suprank0<
157 84 156 eqbrtrd φfBgBk:IxIE:V×V0kxfDgsuprank0<
158 elicc2 0suprank0<fDg0suprank0<fDg0fDgfDgsuprank0<
159 101 152 158 sylancr φfBgBk:IxIE:V×V0kxfDg0suprank0<fDg0fDgfDgsuprank0<
160 71 73 157 159 mpbir3and φfBgBk:IxIE:V×V0kxfDg0suprank0<
161 160 an32s φk:IxIE:V×V0kxfBgBfDg0suprank0<
162 161 ralrimivva φk:IxIE:V×V0kxfBgBfDg0suprank0<
163 ffnov D:B×B0suprank0<DFnB×BfBgBfDg0suprank0<
164 64 162 163 sylanbrc φk:IxIE:V×V0kxD:B×B0suprank0<
165 oveq2 m=suprank0<0m=0suprank0<
166 165 feq3d m=suprank0<D:B×B0mD:B×B0suprank0<
167 166 rspcev suprank0<D:B×B0suprank0<mD:B×B0m
168 60 164 167 syl2anc φk:IxIE:V×V0kxmD:B×B0m
169 34 168 exlimddv φmD:B×B0m
170 isbnd3 DBndBDMetBmD:B×B0m
171 26 169 170 sylanbrc φDBndB