Metamath Proof Explorer


Theorem proot1ex

Description: The complex field has primitive N -th roots of unity for all N . (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses proot1ex.g G=mulGrpfld𝑠0
proot1ex.o O=odG
Assertion proot1ex N12NO-1N

Proof

Step Hyp Ref Expression
1 proot1ex.g G=mulGrpfld𝑠0
2 proot1ex.o O=odG
3 neg1cn 1
4 2rp 2+
5 nnrp NN+
6 rpdivcl 2+N+2N+
7 4 5 6 sylancr N2N+
8 7 rpcnd N2N
9 cxpcl 12N12N
10 3 8 9 sylancr N12N
11 3 a1i N1
12 neg1ne0 10
13 12 a1i N10
14 11 13 8 cxpne0d N12N0
15 eldifsn 12N012N12N0
16 10 14 15 sylanbrc N12N0
17 3 a1i Nx01
18 12 a1i Nx010
19 nn0cn x0x
20 mulcl 2Nx2Nx
21 8 19 20 syl2an Nx02Nx
22 17 18 21 cxpefd Nx012Nx=e2Nxlog-1
23 22 eqeq1d Nx012Nx=1e2Nxlog-1=1
24 logcl 110log-1
25 3 12 24 mp2an log-1
26 mulcl 2Nxlog-12Nxlog-1
27 21 25 26 sylancl Nx02Nxlog-1
28 efeq1 2Nxlog-1e2Nxlog-1=12Nxlog-1i2π
29 27 28 syl Nx0e2Nxlog-1=12Nxlog-1i2π
30 2cn 2
31 30 a1i Nx02
32 nncn NN
33 32 adantr Nx0N
34 19 adantl Nx0x
35 nnne0 NN0
36 35 adantr Nx0N0
37 31 33 34 36 div13d Nx02Nx=xN2
38 logm1 log-1=iπ
39 38 a1i Nx0log-1=iπ
40 37 39 oveq12d Nx02Nxlog-1=xN2iπ
41 34 33 36 divcld Nx0xN
42 ax-icn i
43 picn π
44 42 43 mulcli iπ
45 44 a1i Nx0iπ
46 41 31 45 mulassd Nx0xN2iπ=xN2iπ
47 42 a1i Nx0i
48 43 a1i Nx0π
49 31 47 48 mul12d Nx02iπ=i2π
50 49 oveq2d Nx0xN2iπ=xNi2π
51 40 46 50 3eqtrd Nx02Nxlog-1=xNi2π
52 51 oveq1d Nx02Nxlog-1i2π=xNi2πi2π
53 30 43 mulcli 2π
54 42 53 mulcli i2π
55 54 a1i Nx0i2π
56 ine0 i0
57 2ne0 20
58 pire π
59 pipos 0<π
60 58 59 gt0ne0ii π0
61 30 43 57 60 mulne0i 2π0
62 42 53 56 61 mulne0i i2π0
63 62 a1i Nx0i2π0
64 41 55 63 divcan4d Nx0xNi2πi2π=xN
65 52 64 eqtrd Nx02Nxlog-1i2π=xN
66 65 eleq1d Nx02Nxlog-1i2πxN
67 23 29 66 3bitrd Nx012Nx=1xN
68 8 adantr Nx02N
69 simpr Nx0x0
70 17 68 69 cxpmul2d Nx012Nx=-12Nx
71 cnfldexp 12Nx0xmulGrpfld12N=-12Nx
72 10 71 sylan Nx0xmulGrpfld12N=-12Nx
73 cnring fldRing
74 cnfldbas =Basefld
75 cnfld0 0=0fld
76 cndrng fldDivRing
77 74 75 76 drngui 0=Unitfld
78 eqid mulGrpfld=mulGrpfld
79 77 78 unitsubm fldRing0SubMndmulGrpfld
80 73 79 mp1i Nx00SubMndmulGrpfld
81 16 adantr Nx012N0
82 eqid mulGrpfld=mulGrpfld
83 eqid G=G
84 82 1 83 submmulg 0SubMndmulGrpfldx012N0xmulGrpfld12N=xG12N
85 80 69 81 84 syl3anc Nx0xmulGrpfld12N=xG12N
86 70 72 85 3eqtr2rd Nx0xG12N=12Nx
87 86 eqeq1d Nx0xG12N=112Nx=1
88 nnz NN
89 88 adantr Nx0N
90 nn0z x0x
91 90 adantl Nx0x
92 dvdsval2 NN0xNxxN
93 89 36 91 92 syl3anc Nx0NxxN
94 67 87 93 3bitr4rd Nx0NxxG12N=1
95 94 ralrimiva Nx0NxxG12N=1
96 77 1 unitgrp fldRingGGrp
97 73 96 mp1i NGGrp
98 nnnn0 NN0
99 77 1 unitgrpbas 0=BaseG
100 cnfld1 1=1fld
101 77 1 100 unitgrpid fldRing1=0G
102 73 101 ax-mp 1=0G
103 99 2 83 102 odeq GGrp12N0N0N=O12Nx0NxxG12N=1
104 97 16 98 103 syl3anc NN=O12Nx0NxxG12N=1
105 95 104 mpbird NN=O12N
106 105 eqcomd NO12N=N
107 99 2 odf O:00
108 ffn O:00OFn0
109 107 108 ax-mp OFn0
110 fniniseg OFn012NO-1N12N0O12N=N
111 109 110 mp1i N12NO-1N12N0O12N=N
112 16 106 111 mpbir2and N12NO-1N