Metamath Proof Explorer


Theorem ptunhmeo

Description: Define a homeomorphism from a binary product of indexed product topologies to an indexed product topology on the union of the index sets. This is the topological analogue of ( A ^ B ) x. ( A ^ C ) = A ^ ( B + C ) . (Contributed by Mario Carneiro, 8-Feb-2015) (Proof shortened by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses ptunhmeo.x X=K
ptunhmeo.y Y=L
ptunhmeo.j J=𝑡F
ptunhmeo.k K=𝑡FA
ptunhmeo.l L=𝑡FB
ptunhmeo.g G=xX,yYxy
ptunhmeo.c φCV
ptunhmeo.f φF:CTop
ptunhmeo.u φC=AB
ptunhmeo.i φAB=
Assertion ptunhmeo φGK×tLHomeoJ

Proof

Step Hyp Ref Expression
1 ptunhmeo.x X=K
2 ptunhmeo.y Y=L
3 ptunhmeo.j J=𝑡F
4 ptunhmeo.k K=𝑡FA
5 ptunhmeo.l L=𝑡FB
6 ptunhmeo.g G=xX,yYxy
7 ptunhmeo.c φCV
8 ptunhmeo.f φF:CTop
9 ptunhmeo.u φC=AB
10 ptunhmeo.i φAB=
11 vex xV
12 vex yV
13 11 12 op1std z=xy1stz=x
14 11 12 op2ndd z=xy2ndz=y
15 13 14 uneq12d z=xy1stz2ndz=xy
16 15 mpompt zX×Y1stz2ndz=xX,yYxy
17 6 16 eqtr4i G=zX×Y1stz2ndz
18 xp1st zX×Y1stzX
19 18 adantl φzX×Y1stzX
20 ixpeq2 nAFAn=FnnAFAn=nAFn
21 fvres nAFAn=Fn
22 21 unieqd nAFAn=Fn
23 20 22 mprg nAFAn=nAFn
24 ssun1 AAB
25 24 9 sseqtrrid φAC
26 7 25 ssexd φAV
27 8 25 fssresd φFA:ATop
28 4 ptuni AVFA:ATopnAFAn=K
29 26 27 28 syl2anc φnAFAn=K
30 23 29 eqtr3id φnAFn=K
31 30 1 eqtr4di φnAFn=X
32 31 adantr φzX×YnAFn=X
33 19 32 eleqtrrd φzX×Y1stznAFn
34 xp2nd zX×Y2ndzY
35 34 adantl φzX×Y2ndzY
36 9 eqcomd φAB=C
37 uneqdifeq ACAB=AB=CCA=B
38 25 10 37 syl2anc φAB=CCA=B
39 36 38 mpbid φCA=B
40 39 ixpeq1d φnCAFn=nBFn
41 ixpeq2 nBFBn=FnnBFBn=nBFn
42 fvres nBFBn=Fn
43 42 unieqd nBFBn=Fn
44 41 43 mprg nBFBn=nBFn
45 ssun2 BAB
46 45 9 sseqtrrid φBC
47 7 46 ssexd φBV
48 8 46 fssresd φFB:BTop
49 5 ptuni BVFB:BTopnBFBn=L
50 47 48 49 syl2anc φnBFBn=L
51 44 50 eqtr3id φnBFn=L
52 51 2 eqtr4di φnBFn=Y
53 40 52 eqtrd φnCAFn=Y
54 53 adantr φzX×YnCAFn=Y
55 35 54 eleqtrrd φzX×Y2ndznCAFn
56 25 adantr φzX×YAC
57 undifixp 1stznAFn2ndznCAFnAC1stz2ndznCFn
58 33 55 56 57 syl3anc φzX×Y1stz2ndznCFn
59 ixpfn 1stz2ndznCFn1stz2ndzFnC
60 58 59 syl φzX×Y1stz2ndzFnC
61 dffn5 1stz2ndzFnC1stz2ndz=kC1stz2ndzk
62 60 61 sylib φzX×Y1stz2ndz=kC1stz2ndzk
63 62 mpteq2dva φzX×Y1stz2ndz=zX×YkC1stz2ndzk
64 17 63 eqtrid φG=zX×YkC1stz2ndzk
65 pttop AVFA:ATop𝑡FATop
66 26 27 65 syl2anc φ𝑡FATop
67 4 66 eqeltrid φKTop
68 1 toptopon KTopKTopOnX
69 67 68 sylib φKTopOnX
70 pttop BVFB:BTop𝑡FBTop
71 47 48 70 syl2anc φ𝑡FBTop
72 5 71 eqeltrid φLTop
73 2 toptopon LTopLTopOnY
74 72 73 sylib φLTopOnY
75 txtopon KTopOnXLTopOnYK×tLTopOnX×Y
76 69 74 75 syl2anc φK×tLTopOnX×Y
77 9 eleq2d φkCkAB
78 77 biimpa φkCkAB
79 elun kABkAkB
80 78 79 sylib φkCkAkB
81 ixpfn 1stznAFn1stzFnA
82 33 81 syl φzX×Y1stzFnA
83 82 adantlr φkAzX×Y1stzFnA
84 52 adantr φzX×YnBFn=Y
85 35 84 eleqtrrd φzX×Y2ndznBFn
86 ixpfn 2ndznBFn2ndzFnB
87 85 86 syl φzX×Y2ndzFnB
88 87 adantlr φkAzX×Y2ndzFnB
89 10 ad2antrr φkAzX×YAB=
90 simplr φkAzX×YkA
91 fvun1 1stzFnA2ndzFnBAB=kA1stz2ndzk=1stzk
92 83 88 89 90 91 syl112anc φkAzX×Y1stz2ndzk=1stzk
93 92 mpteq2dva φkAzX×Y1stz2ndzk=zX×Y1stzk
94 76 adantr φkAK×tLTopOnX×Y
95 13 mpompt zX×Y1stz=xX,yYx
96 69 adantr φkAKTopOnX
97 74 adantr φkALTopOnY
98 96 97 cnmpt1st φkAxX,yYxK×tLCnK
99 95 98 eqeltrid φkAzX×Y1stzK×tLCnK
100 26 adantr φkAAV
101 27 adantr φkAFA:ATop
102 simpr φkAkA
103 1 4 ptpjcn AVFA:ATopkAfXfkKCnFAk
104 100 101 102 103 syl3anc φkAfXfkKCnFAk
105 fvres kAFAk=Fk
106 105 adantl φkAFAk=Fk
107 106 oveq2d φkAKCnFAk=KCnFk
108 104 107 eleqtrd φkAfXfkKCnFk
109 fveq1 f=1stzfk=1stzk
110 94 99 96 108 109 cnmpt11 φkAzX×Y1stzkK×tLCnFk
111 93 110 eqeltrd φkAzX×Y1stz2ndzkK×tLCnFk
112 82 adantlr φkBzX×Y1stzFnA
113 87 adantlr φkBzX×Y2ndzFnB
114 10 ad2antrr φkBzX×YAB=
115 simplr φkBzX×YkB
116 fvun2 1stzFnA2ndzFnBAB=kB1stz2ndzk=2ndzk
117 112 113 114 115 116 syl112anc φkBzX×Y1stz2ndzk=2ndzk
118 117 mpteq2dva φkBzX×Y1stz2ndzk=zX×Y2ndzk
119 76 adantr φkBK×tLTopOnX×Y
120 14 mpompt zX×Y2ndz=xX,yYy
121 69 adantr φkBKTopOnX
122 74 adantr φkBLTopOnY
123 121 122 cnmpt2nd φkBxX,yYyK×tLCnL
124 120 123 eqeltrid φkBzX×Y2ndzK×tLCnL
125 47 adantr φkBBV
126 48 adantr φkBFB:BTop
127 simpr φkBkB
128 2 5 ptpjcn BVFB:BTopkBfYfkLCnFBk
129 125 126 127 128 syl3anc φkBfYfkLCnFBk
130 fvres kBFBk=Fk
131 130 adantl φkBFBk=Fk
132 131 oveq2d φkBLCnFBk=LCnFk
133 129 132 eleqtrd φkBfYfkLCnFk
134 fveq1 f=2ndzfk=2ndzk
135 119 124 122 133 134 cnmpt11 φkBzX×Y2ndzkK×tLCnFk
136 118 135 eqeltrd φkBzX×Y1stz2ndzkK×tLCnFk
137 111 136 jaodan φkAkBzX×Y1stz2ndzkK×tLCnFk
138 80 137 syldan φkCzX×Y1stz2ndzkK×tLCnFk
139 3 76 7 8 138 ptcn φzX×YkC1stz2ndzkK×tLCnJ
140 64 139 eqeltrd φGK×tLCnJ
141 1 2 3 4 5 6 7 8 9 10 ptuncnv φG-1=zJzAzB
142 pttop CVF:CTop𝑡FTop
143 7 8 142 syl2anc φ𝑡FTop
144 3 143 eqeltrid φJTop
145 eqid J=J
146 145 toptopon JTopJTopOnJ
147 144 146 sylib φJTopOnJ
148 145 3 4 ptrescn CVF:CTopACzJzAJCnK
149 7 8 25 148 syl3anc φzJzAJCnK
150 145 3 5 ptrescn CVF:CTopBCzJzBJCnL
151 7 8 46 150 syl3anc φzJzBJCnL
152 147 149 151 cnmpt1t φzJzAzBJCnK×tL
153 141 152 eqeltrd φG-1JCnK×tL
154 ishmeo GK×tLHomeoJGK×tLCnJG-1JCnK×tL
155 140 153 154 sylanbrc φGK×tLHomeoJ