Metamath Proof Explorer


Theorem rplogsum

Description: The sum of log p / p over the primes p == A (mod N ) is asymptotic to log x / phi ( x ) + O(1) . Equation 9.4.3 of Shapiro, p. 375. (Contributed by Mario Carneiro, 16-Apr-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.u U=UnitZ
rpvmasum.b φAU
rpvmasum.t T=L-1A
Assertion rplogsum φx+ϕNp1xTlogpplogx𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.u U=UnitZ
5 rpvmasum.b φAU
6 rpvmasum.t T=L-1A
7 1 2 3 4 5 6 rpvmasum φx+ϕNp1xTΛpplogx𝑂1
8 3 phicld φϕN
9 8 adantr φx+ϕN
10 9 nncnd φx+ϕN
11 fzfid φx+1xFin
12 inss1 1xT1x
13 ssfi 1xFin1xT1x1xTFin
14 11 12 13 sylancl φx+1xTFin
15 simpr φx+p1xTp1xT
16 15 elin1d φx+p1xTp1x
17 elfznn p1xp
18 16 17 syl φx+p1xTp
19 vmacl pΛp
20 nndivre ΛppΛpp
21 19 20 mpancom pΛpp
22 18 21 syl φx+p1xTΛpp
23 14 22 fsumrecl φx+p1xTΛpp
24 23 recnd φx+p1xTΛpp
25 10 24 mulcld φx+ϕNp1xTΛpp
26 relogcl x+logx
27 26 adantl φx+logx
28 27 recnd φx+logx
29 25 28 subcld φx+ϕNp1xTΛpplogx
30 inss1 1xT1x
31 ssfi 1xFin1xT1x1xTFin
32 11 30 31 sylancl φx+1xTFin
33 simpr φx+p1xTp1xT
34 33 elin1d φx+p1xTp1x
35 34 17 syl φx+p1xTp
36 nnrp pp+
37 36 relogcld plogp
38 37 36 rerpdivcld plogpp
39 35 38 syl φx+p1xTlogpp
40 32 39 fsumrecl φx+p1xTlogpp
41 40 recnd φx+p1xTlogpp
42 10 41 mulcld φx+ϕNp1xTlogpp
43 42 28 subcld φx+ϕNp1xTlogpplogx
44 10 24 41 subdid φx+ϕNp1xTΛppp1xTlogpp=ϕNp1xTΛppϕNp1xTlogpp
45 19 recnd pΛp
46 0re 0
47 ifcl logp0ifplogp0
48 37 46 47 sylancl pifplogp0
49 48 recnd pifplogp0
50 36 rpcnne0d ppp0
51 divsubdir Λpifplogp0pp0Λpifplogp0p=Λppifplogp0p
52 45 49 50 51 syl3anc pΛpifplogp0p=Λppifplogp0p
53 18 52 syl φx+p1xTΛpifplogp0p=Λppifplogp0p
54 53 sumeq2dv φx+p1xTΛpifplogp0p=p1xTΛppifplogp0p
55 21 recnd pΛpp
56 18 55 syl φx+p1xTΛpp
57 48 36 rerpdivcld pifplogp0p
58 57 recnd pifplogp0p
59 18 58 syl φx+p1xTifplogp0p
60 14 56 59 fsumsub φx+p1xTΛppifplogp0p=p1xTΛppp1xTifplogp0p
61 inss2 TT
62 sslin TT1xT1xT
63 61 62 mp1i φx+1xT1xT
64 35 58 syl φx+p1xTifplogp0p
65 eldif p1xT1xTp1xT¬p1xT
66 incom T=T
67 66 ineq2i 1xT=1xT
68 inass 1xT=1xT
69 67 68 eqtr4i 1xT=1xT
70 69 elin2 p1xTp1xTp
71 70 simplbi2 p1xTpp1xT
72 71 con3dimp p1xT¬p1xT¬p
73 65 72 sylbi p1xT1xT¬p
74 73 adantl φx+p1xT1xT¬p
75 74 iffalsed φx+p1xT1xTifplogp0=0
76 75 oveq1d φx+p1xT1xTifplogp0p=0p
77 eldifi p1xT1xTp1xT
78 77 18 sylan2 φx+p1xT1xTp
79 div0 pp00p=0
80 50 79 syl p0p=0
81 78 80 syl φx+p1xT1xT0p=0
82 76 81 eqtrd φx+p1xT1xTifplogp0p=0
83 63 64 82 14 fsumss φx+p1xTifplogp0p=p1xTifplogp0p
84 inss2 1xTT
85 inss1 T
86 84 85 sstri 1xT
87 86 33 sselid φx+p1xTp
88 87 iftrued φx+p1xTifplogp0=logp
89 88 oveq1d φx+p1xTifplogp0p=logpp
90 89 sumeq2dv φx+p1xTifplogp0p=p1xTlogpp
91 83 90 eqtr3d φx+p1xTifplogp0p=p1xTlogpp
92 91 oveq2d φx+p1xTΛppp1xTifplogp0p=p1xTΛppp1xTlogpp
93 54 60 92 3eqtrd φx+p1xTΛpifplogp0p=p1xTΛppp1xTlogpp
94 93 oveq2d φx+ϕNp1xTΛpifplogp0p=ϕNp1xTΛppp1xTlogpp
95 25 42 28 nnncan2d φx+ϕNp1xTΛpp-logx-ϕNp1xTlogpplogx=ϕNp1xTΛppϕNp1xTlogpp
96 44 94 95 3eqtr4d φx+ϕNp1xTΛpifplogp0p=ϕNp1xTΛpp-logx-ϕNp1xTlogpplogx
97 96 mpteq2dva φx+ϕNp1xTΛpifplogp0p=x+ϕNp1xTΛpp-logx-ϕNp1xTlogpplogx
98 19 48 resubcld pΛpifplogp0
99 98 36 rerpdivcld pΛpifplogp0p
100 18 99 syl φx+p1xTΛpifplogp0p
101 14 100 fsumrecl φx+p1xTΛpifplogp0p
102 101 recnd φx+p1xTΛpifplogp0p
103 rpssre +
104 8 nncnd φϕN
105 o1const +ϕNx+ϕN𝑂1
106 103 104 105 sylancr φx+ϕN𝑂1
107 103 a1i φ+
108 1red φ1
109 2re 2
110 109 a1i φ2
111 breq1 logp=ifplogp0logpΛpifplogp0Λp
112 breq1 0=ifplogp00Λpifplogp0Λp
113 37 adantr pplogp
114 vmaprm pΛp=logp
115 114 adantl ppΛp=logp
116 115 eqcomd pplogp=Λp
117 113 116 eqled pplogpΛp
118 vmage0 p0Λp
119 118 adantr p¬p0Λp
120 111 112 117 119 ifbothda pifplogp0Λp
121 19 48 subge0d p0Λpifplogp0ifplogp0Λp
122 120 121 mpbird p0Λpifplogp0
123 98 36 122 divge0d p0Λpifplogp0p
124 18 123 syl φx+p1xT0Λpifplogp0p
125 14 100 124 fsumge0 φx+0p1xTΛpifplogp0p
126 101 125 absidd φx+p1xTΛpifplogp0p=p1xTΛpifplogp0p
127 17 adantl φx+p1xp
128 127 99 syl φx+p1xΛpifplogp0p
129 11 128 fsumrecl φx+p=1xΛpifplogp0p
130 109 a1i φx+2
131 127 123 syl φx+p1x0Λpifplogp0p
132 12 a1i φx+1xT1x
133 11 128 131 132 fsumless φx+p1xTΛpifplogp0pp=1xΛpifplogp0p
134 107 sselda φx+x
135 134 flcld φx+x
136 rplogsumlem2 xp=1xΛpifplogp0p2
137 135 136 syl φx+p=1xΛpifplogp0p2
138 101 129 130 133 137 letrd φx+p1xTΛpifplogp0p2
139 126 138 eqbrtrd φx+p1xTΛpifplogp0p2
140 139 adantrr φx+1xp1xTΛpifplogp0p2
141 107 102 108 110 140 elo1d φx+p1xTΛpifplogp0p𝑂1
142 10 102 106 141 o1mul2 φx+ϕNp1xTΛpifplogp0p𝑂1
143 97 142 eqeltrrd φx+ϕNp1xTΛpp-logx-ϕNp1xTlogpplogx𝑂1
144 29 43 143 o1dif φx+ϕNp1xTΛpplogx𝑂1x+ϕNp1xTlogpplogx𝑂1
145 7 144 mpbid φx+ϕNp1xTlogpplogx𝑂1