Metamath Proof Explorer


Theorem stirlinglem11

Description: B is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem11.1 A=nn!2nnen
stirlinglem11.2 B=nlogAn
stirlinglem11.3 K=k12k+112 N+12k
Assertion stirlinglem11 NBN+1<BN

Proof

Step Hyp Ref Expression
1 stirlinglem11.1 A=nn!2nnen
2 stirlinglem11.2 B=nlogAn
3 stirlinglem11.3 K=k12k+112 N+12k
4 0red N0
5 3 a1i NK=k12k+112 N+12k
6 simpr Nk=1k=1
7 6 oveq2d Nk=12k=21
8 7 oveq1d Nk=12k+1=21+1
9 8 oveq2d Nk=112k+1=121+1
10 7 oveq2d Nk=112 N+12k=12 N+121
11 9 10 oveq12d Nk=112k+112 N+12k=121+112 N+121
12 1nn 1
13 12 a1i N1
14 2cnd N2
15 1cnd N1
16 14 15 mulcld N21
17 16 15 addcld N21+1
18 2t1e2 21=2
19 18 oveq1i 21+1=2+1
20 2p1e3 2+1=3
21 19 20 eqtri 21+1=3
22 3ne0 30
23 21 22 eqnetri 21+10
24 23 a1i N21+10
25 17 24 reccld N121+1
26 nncn NN
27 14 26 mulcld N2 N
28 27 15 addcld N2 N+1
29 1red N1
30 2re 2
31 30 a1i N2
32 nnre NN
33 31 32 remulcld N2 N
34 33 29 readdcld N2 N+1
35 0lt1 0<1
36 35 a1i N0<1
37 2rp 2+
38 37 a1i N2+
39 nnrp NN+
40 38 39 rpmulcld N2 N+
41 29 40 ltaddrp2d N1<2 N+1
42 4 29 34 36 41 lttrd N0<2 N+1
43 42 gt0ne0d N2 N+10
44 28 43 reccld N12 N+1
45 2nn0 20
46 45 a1i N20
47 1nn0 10
48 47 a1i N10
49 46 48 nn0mulcld N210
50 44 49 expcld N12 N+121
51 25 50 mulcld N121+112 N+121
52 5 11 13 51 fvmptd NK1=121+112 N+121
53 1re 1
54 30 53 remulcli 21
55 54 53 readdcli 21+1
56 55 23 rereccli 121+1
57 56 a1i N121+1
58 34 43 rereccld N12 N+1
59 58 49 reexpcld N12 N+121
60 57 59 remulcld N121+112 N+121
61 52 60 eqeltrd NK1
62 1 stirlinglem2 NAN+
63 62 relogcld NlogAN
64 nfcv _nN
65 nfcv _nlog
66 nfmpt1 _nnn!2nnen
67 1 66 nfcxfr _nA
68 67 64 nffv _nAN
69 65 68 nffv _nlogAN
70 2fveq3 n=NlogAn=logAN
71 64 69 70 2 fvmptf NlogANBN=logAN
72 63 71 mpdan NBN=logAN
73 72 63 eqeltrd NBN
74 peano2nn NN+1
75 1 stirlinglem2 N+1AN+1+
76 74 75 syl NAN+1+
77 76 relogcld NlogAN+1
78 nfcv _nN+1
79 67 78 nffv _nAN+1
80 65 79 nffv _nlogAN+1
81 2fveq3 n=N+1logAn=logAN+1
82 78 80 81 2 fvmptf N+1logAN+1BN+1=logAN+1
83 74 77 82 syl2anc NBN+1=logAN+1
84 83 77 eqeltrd NBN+1
85 73 84 resubcld NBNBN+1
86 31 29 remulcld N21
87 0le2 02
88 87 a1i N02
89 0le1 01
90 89 a1i N01
91 31 29 88 90 mulge0d N021
92 86 91 ge0p1rpd N21+1+
93 92 rpreccld N121+1+
94 39 rpge0d N0N
95 31 32 88 94 mulge0d N02 N
96 33 95 ge0p1rpd N2 N+1+
97 96 rpreccld N12 N+1+
98 2z 2
99 98 a1i N2
100 1z 1
101 100 a1i N1
102 99 101 zmulcld N21
103 97 102 rpexpcld N12 N+121+
104 93 103 rpmulcld N121+112 N+121+
105 52 104 eqeltrd NK1+
106 105 rpgt0d N0<K1
107 85 61 resubcld NBN-BN+1-K1
108 eqid 1+1=1+1
109 101 peano2zd N1+1
110 nnuz =1
111 3 a1i NjK=k12k+112 N+12k
112 oveq2 k=j2k=2j
113 112 oveq1d k=j2k+1=2j+1
114 113 oveq2d k=j12k+1=12j+1
115 112 oveq2d k=j12 N+12k=12 N+12j
116 114 115 oveq12d k=j12k+112 N+12k=12j+112 N+12j
117 116 adantl Njk=j12k+112 N+12k=12j+112 N+12j
118 simpr Njj
119 2cnd Nj2
120 nncn jj
121 120 adantl Njj
122 119 121 mulcld Nj2j
123 1cnd Nj1
124 122 123 addcld Nj2j+1
125 0red Nj0
126 1red Nj1
127 30 a1i Nj2
128 nnre jj
129 128 adantl Njj
130 127 129 remulcld Nj2j
131 130 126 readdcld Nj2j+1
132 35 a1i Nj0<1
133 37 a1i Nj2+
134 nnrp jj+
135 134 adantl Njj+
136 133 135 rpmulcld Nj2j+
137 126 136 ltaddrp2d Nj1<2j+1
138 125 126 131 132 137 lttrd Nj0<2j+1
139 138 gt0ne0d Nj2j+10
140 124 139 reccld Nj12j+1
141 26 adantr NjN
142 119 141 mulcld Nj2 N
143 142 123 addcld Nj2 N+1
144 43 adantr Nj2 N+10
145 143 144 reccld Nj12 N+1
146 45 a1i Nj20
147 nnnn0 jj0
148 147 adantl Njj0
149 146 148 nn0mulcld Nj2j0
150 145 149 expcld Nj12 N+12j
151 140 150 mulcld Nj12j+112 N+12j
152 111 117 118 151 fvmptd NjKj=12j+112 N+12j
153 0red j0
154 1red j1
155 30 a1i j2
156 155 128 remulcld j2j
157 156 154 readdcld j2j+1
158 35 a1i j0<1
159 37 a1i j2+
160 159 134 rpmulcld j2j+
161 154 160 ltaddrp2d j1<2j+1
162 153 154 157 158 161 lttrd j0<2j+1
163 162 gt0ne0d j2j+10
164 163 adantl Nj2j+10
165 124 164 reccld Nj12j+1
166 165 150 mulcld Nj12j+112 N+12j
167 152 166 eqeltrd NjKj
168 eqid n1+2n2logn+1n1=n1+2n2logn+1n1
169 1 2 168 3 stirlinglem9 Nseq1+KBNBN+1
170 110 13 167 169 clim2ser Nseq1+1+KBN-BN+1-seq1+K1
171 peano2nn 11+1
172 uznnssnn 1+11+1
173 12 171 172 mp2b 1+1
174 173 a1i N1+1
175 174 sseld Nj1+1j
176 175 imdistani Nj1+1Nj
177 176 152 syl Nj1+1Kj=12j+112 N+12j
178 30 a1i j1+12
179 eluzelre j1+1j
180 178 179 remulcld j1+12j
181 1red j1+11
182 180 181 readdcld j1+12j+1
183 173 sseli j1+1j
184 183 163 syl j1+12j+10
185 182 184 rereccld j1+112j+1
186 185 adantl Nj1+112j+1
187 34 adantr Nj1+12 N+1
188 43 adantr Nj1+12 N+10
189 187 188 rereccld Nj1+112 N+1
190 176 149 syl Nj1+12j0
191 189 190 reexpcld Nj1+112 N+12j
192 186 191 remulcld Nj1+112j+112 N+12j
193 177 192 eqeltrd Nj1+1Kj
194 1red Nj1+11
195 30 a1i Nj1+12
196 176 129 syl Nj1+1j
197 195 196 remulcld Nj1+12j
198 87 a1i Nj1+102
199 0red j1+10
200 87 a1i j1+102
201 1p1e2 1+1=2
202 eluzle j1+11+1j
203 201 202 eqbrtrrid j1+12j
204 199 178 179 200 203 letrd j1+10j
205 204 adantl Nj1+10j
206 195 196 198 205 mulge0d Nj1+102j
207 197 206 ge0p1rpd Nj1+12j+1+
208 89 a1i Nj1+101
209 194 207 208 divge0d Nj1+1012j+1
210 32 adantr Nj1+1N
211 195 210 remulcld Nj1+12 N
212 94 adantr Nj1+10N
213 195 210 198 212 mulge0d Nj1+102 N
214 211 213 ge0p1rpd Nj1+12 N+1+
215 194 214 208 divge0d Nj1+1012 N+1
216 189 190 215 expge0d Nj1+1012 N+12j
217 186 191 209 216 mulge0d Nj1+1012j+112 N+12j
218 217 177 breqtrrd Nj1+10Kj
219 108 109 170 193 218 iserge0 N0BN-BN+1-seq1+K1
220 seq1 1seq1+K1=K1
221 100 220 mp1i Nseq1+K1=K1
222 221 oveq2d NBN-BN+1-seq1+K1=BN-BN+1-K1
223 219 222 breqtrd N0BN-BN+1-K1
224 4 107 61 223 leadd1dd N0+K1BNBN+1-K1+K1
225 52 51 eqeltrd NK1
226 225 addlidd N0+K1=K1
227 73 recnd NBN
228 84 recnd NBN+1
229 227 228 subcld NBNBN+1
230 229 225 npcand NBNBN+1-K1+K1=BNBN+1
231 224 226 230 3brtr3d NK1BNBN+1
232 4 61 85 106 231 ltletrd N0<BNBN+1
233 84 73 posdifd NBN+1<BN0<BNBN+1
234 232 233 mpbird NBN+1<BN