Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Stirling's approximation formula for ` n ` factorial
stirlinglem11
Next ⟩
stirlinglem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
stirlinglem11
Description:
B
is decreasing.
(Contributed by
Glauco Siliprandi
, 29-Jun-2017)
Ref
Expression
Hypotheses
stirlinglem11.1
⊢
A
=
n
∈
ℕ
⟼
n
!
2
n
n
e
n
stirlinglem11.2
⊢
B
=
n
∈
ℕ
⟼
log
A
n
stirlinglem11.3
⊢
K
=
k
∈
ℕ
⟼
1
2
k
+
1
1
2
⋅
N
+
1
2
k
Assertion
stirlinglem11
⊢
N
∈
ℕ
→
B
N
+
1
<
B
N
Proof
Step
Hyp
Ref
Expression
1
stirlinglem11.1
⊢
A
=
n
∈
ℕ
⟼
n
!
2
n
n
e
n
2
stirlinglem11.2
⊢
B
=
n
∈
ℕ
⟼
log
A
n
3
stirlinglem11.3
⊢
K
=
k
∈
ℕ
⟼
1
2
k
+
1
1
2
⋅
N
+
1
2
k
4
0red
⊢
N
∈
ℕ
→
0
∈
ℝ
5
3
a1i
⊢
N
∈
ℕ
→
K
=
k
∈
ℕ
⟼
1
2
k
+
1
1
2
⋅
N
+
1
2
k
6
simpr
⊢
N
∈
ℕ
∧
k
=
1
→
k
=
1
7
6
oveq2d
⊢
N
∈
ℕ
∧
k
=
1
→
2
k
=
2
⋅
1
8
7
oveq1d
⊢
N
∈
ℕ
∧
k
=
1
→
2
k
+
1
=
2
⋅
1
+
1
9
8
oveq2d
⊢
N
∈
ℕ
∧
k
=
1
→
1
2
k
+
1
=
1
2
⋅
1
+
1
10
7
oveq2d
⊢
N
∈
ℕ
∧
k
=
1
→
1
2
⋅
N
+
1
2
k
=
1
2
⋅
N
+
1
2
⋅
1
11
9
10
oveq12d
⊢
N
∈
ℕ
∧
k
=
1
→
1
2
k
+
1
1
2
⋅
N
+
1
2
k
=
1
2
⋅
1
+
1
1
2
⋅
N
+
1
2
⋅
1
12
1nn
⊢
1
∈
ℕ
13
12
a1i
⊢
N
∈
ℕ
→
1
∈
ℕ
14
2cnd
⊢
N
∈
ℕ
→
2
∈
ℂ
15
1cnd
⊢
N
∈
ℕ
→
1
∈
ℂ
16
14
15
mulcld
⊢
N
∈
ℕ
→
2
⋅
1
∈
ℂ
17
16
15
addcld
⊢
N
∈
ℕ
→
2
⋅
1
+
1
∈
ℂ
18
2t1e2
⊢
2
⋅
1
=
2
19
18
oveq1i
⊢
2
⋅
1
+
1
=
2
+
1
20
2p1e3
⊢
2
+
1
=
3
21
19
20
eqtri
⊢
2
⋅
1
+
1
=
3
22
3ne0
⊢
3
≠
0
23
21
22
eqnetri
⊢
2
⋅
1
+
1
≠
0
24
23
a1i
⊢
N
∈
ℕ
→
2
⋅
1
+
1
≠
0
25
17
24
reccld
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
∈
ℂ
26
nncn
⊢
N
∈
ℕ
→
N
∈
ℂ
27
14
26
mulcld
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℂ
28
27
15
addcld
⊢
N
∈
ℕ
→
2
⋅
N
+
1
∈
ℂ
29
1red
⊢
N
∈
ℕ
→
1
∈
ℝ
30
2re
⊢
2
∈
ℝ
31
30
a1i
⊢
N
∈
ℕ
→
2
∈
ℝ
32
nnre
⊢
N
∈
ℕ
→
N
∈
ℝ
33
31
32
remulcld
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℝ
34
33
29
readdcld
⊢
N
∈
ℕ
→
2
⋅
N
+
1
∈
ℝ
35
0lt1
⊢
0
<
1
36
35
a1i
⊢
N
∈
ℕ
→
0
<
1
37
2rp
⊢
2
∈
ℝ
+
38
37
a1i
⊢
N
∈
ℕ
→
2
∈
ℝ
+
39
nnrp
⊢
N
∈
ℕ
→
N
∈
ℝ
+
40
38
39
rpmulcld
⊢
N
∈
ℕ
→
2
⋅
N
∈
ℝ
+
41
29
40
ltaddrp2d
⊢
N
∈
ℕ
→
1
<
2
⋅
N
+
1
42
4
29
34
36
41
lttrd
⊢
N
∈
ℕ
→
0
<
2
⋅
N
+
1
43
42
gt0ne0d
⊢
N
∈
ℕ
→
2
⋅
N
+
1
≠
0
44
28
43
reccld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
∈
ℂ
45
2nn0
⊢
2
∈
ℕ
0
46
45
a1i
⊢
N
∈
ℕ
→
2
∈
ℕ
0
47
1nn0
⊢
1
∈
ℕ
0
48
47
a1i
⊢
N
∈
ℕ
→
1
∈
ℕ
0
49
46
48
nn0mulcld
⊢
N
∈
ℕ
→
2
⋅
1
∈
ℕ
0
50
44
49
expcld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
2
⋅
1
∈
ℂ
51
25
50
mulcld
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
1
2
⋅
N
+
1
2
⋅
1
∈
ℂ
52
5
11
13
51
fvmptd
⊢
N
∈
ℕ
→
K
1
=
1
2
⋅
1
+
1
1
2
⋅
N
+
1
2
⋅
1
53
1re
⊢
1
∈
ℝ
54
30
53
remulcli
⊢
2
⋅
1
∈
ℝ
55
54
53
readdcli
⊢
2
⋅
1
+
1
∈
ℝ
56
55
23
rereccli
⊢
1
2
⋅
1
+
1
∈
ℝ
57
56
a1i
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
∈
ℝ
58
34
43
rereccld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
∈
ℝ
59
58
49
reexpcld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
2
⋅
1
∈
ℝ
60
57
59
remulcld
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
1
2
⋅
N
+
1
2
⋅
1
∈
ℝ
61
52
60
eqeltrd
⊢
N
∈
ℕ
→
K
1
∈
ℝ
62
1
stirlinglem2
⊢
N
∈
ℕ
→
A
N
∈
ℝ
+
63
62
relogcld
⊢
N
∈
ℕ
→
log
A
N
∈
ℝ
64
nfcv
⊢
Ⅎ
_
n
N
65
nfcv
⊢
Ⅎ
_
n
log
66
nfmpt1
⊢
Ⅎ
_
n
n
∈
ℕ
⟼
n
!
2
n
n
e
n
67
1
66
nfcxfr
⊢
Ⅎ
_
n
A
68
67
64
nffv
⊢
Ⅎ
_
n
A
N
69
65
68
nffv
⊢
Ⅎ
_
n
log
A
N
70
2fveq3
⊢
n
=
N
→
log
A
n
=
log
A
N
71
64
69
70
2
fvmptf
⊢
N
∈
ℕ
∧
log
A
N
∈
ℝ
→
B
N
=
log
A
N
72
63
71
mpdan
⊢
N
∈
ℕ
→
B
N
=
log
A
N
73
72
63
eqeltrd
⊢
N
∈
ℕ
→
B
N
∈
ℝ
74
peano2nn
⊢
N
∈
ℕ
→
N
+
1
∈
ℕ
75
1
stirlinglem2
⊢
N
+
1
∈
ℕ
→
A
N
+
1
∈
ℝ
+
76
74
75
syl
⊢
N
∈
ℕ
→
A
N
+
1
∈
ℝ
+
77
76
relogcld
⊢
N
∈
ℕ
→
log
A
N
+
1
∈
ℝ
78
nfcv
⊢
Ⅎ
_
n
N
+
1
79
67
78
nffv
⊢
Ⅎ
_
n
A
N
+
1
80
65
79
nffv
⊢
Ⅎ
_
n
log
A
N
+
1
81
2fveq3
⊢
n
=
N
+
1
→
log
A
n
=
log
A
N
+
1
82
78
80
81
2
fvmptf
⊢
N
+
1
∈
ℕ
∧
log
A
N
+
1
∈
ℝ
→
B
N
+
1
=
log
A
N
+
1
83
74
77
82
syl2anc
⊢
N
∈
ℕ
→
B
N
+
1
=
log
A
N
+
1
84
83
77
eqeltrd
⊢
N
∈
ℕ
→
B
N
+
1
∈
ℝ
85
73
84
resubcld
⊢
N
∈
ℕ
→
B
N
−
B
N
+
1
∈
ℝ
86
31
29
remulcld
⊢
N
∈
ℕ
→
2
⋅
1
∈
ℝ
87
0le2
⊢
0
≤
2
88
87
a1i
⊢
N
∈
ℕ
→
0
≤
2
89
0le1
⊢
0
≤
1
90
89
a1i
⊢
N
∈
ℕ
→
0
≤
1
91
31
29
88
90
mulge0d
⊢
N
∈
ℕ
→
0
≤
2
⋅
1
92
86
91
ge0p1rpd
⊢
N
∈
ℕ
→
2
⋅
1
+
1
∈
ℝ
+
93
92
rpreccld
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
∈
ℝ
+
94
39
rpge0d
⊢
N
∈
ℕ
→
0
≤
N
95
31
32
88
94
mulge0d
⊢
N
∈
ℕ
→
0
≤
2
⋅
N
96
33
95
ge0p1rpd
⊢
N
∈
ℕ
→
2
⋅
N
+
1
∈
ℝ
+
97
96
rpreccld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
∈
ℝ
+
98
2z
⊢
2
∈
ℤ
99
98
a1i
⊢
N
∈
ℕ
→
2
∈
ℤ
100
1z
⊢
1
∈
ℤ
101
100
a1i
⊢
N
∈
ℕ
→
1
∈
ℤ
102
99
101
zmulcld
⊢
N
∈
ℕ
→
2
⋅
1
∈
ℤ
103
97
102
rpexpcld
⊢
N
∈
ℕ
→
1
2
⋅
N
+
1
2
⋅
1
∈
ℝ
+
104
93
103
rpmulcld
⊢
N
∈
ℕ
→
1
2
⋅
1
+
1
1
2
⋅
N
+
1
2
⋅
1
∈
ℝ
+
105
52
104
eqeltrd
⊢
N
∈
ℕ
→
K
1
∈
ℝ
+
106
105
rpgt0d
⊢
N
∈
ℕ
→
0
<
K
1
107
85
61
resubcld
⊢
N
∈
ℕ
→
B
N
-
B
N
+
1
-
K
1
∈
ℝ
108
eqid
⊢
ℤ
≥
1
+
1
=
ℤ
≥
1
+
1
109
101
peano2zd
⊢
N
∈
ℕ
→
1
+
1
∈
ℤ
110
nnuz
⊢
ℕ
=
ℤ
≥
1
111
3
a1i
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
K
=
k
∈
ℕ
⟼
1
2
k
+
1
1
2
⋅
N
+
1
2
k
112
oveq2
⊢
k
=
j
→
2
k
=
2
j
113
112
oveq1d
⊢
k
=
j
→
2
k
+
1
=
2
j
+
1
114
113
oveq2d
⊢
k
=
j
→
1
2
k
+
1
=
1
2
j
+
1
115
112
oveq2d
⊢
k
=
j
→
1
2
⋅
N
+
1
2
k
=
1
2
⋅
N
+
1
2
j
116
114
115
oveq12d
⊢
k
=
j
→
1
2
k
+
1
1
2
⋅
N
+
1
2
k
=
1
2
j
+
1
1
2
⋅
N
+
1
2
j
117
116
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
∧
k
=
j
→
1
2
k
+
1
1
2
⋅
N
+
1
2
k
=
1
2
j
+
1
1
2
⋅
N
+
1
2
j
118
simpr
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℕ
119
2cnd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
∈
ℂ
120
nncn
⊢
j
∈
ℕ
→
j
∈
ℂ
121
120
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℂ
122
119
121
mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
∈
ℂ
123
1cnd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
∈
ℂ
124
122
123
addcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
+
1
∈
ℂ
125
0red
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
0
∈
ℝ
126
1red
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
∈
ℝ
127
30
a1i
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
∈
ℝ
128
nnre
⊢
j
∈
ℕ
→
j
∈
ℝ
129
128
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℝ
130
127
129
remulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
∈
ℝ
131
130
126
readdcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
+
1
∈
ℝ
132
35
a1i
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
0
<
1
133
37
a1i
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
∈
ℝ
+
134
nnrp
⊢
j
∈
ℕ
→
j
∈
ℝ
+
135
134
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℝ
+
136
133
135
rpmulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
∈
ℝ
+
137
126
136
ltaddrp2d
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
<
2
j
+
1
138
125
126
131
132
137
lttrd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
0
<
2
j
+
1
139
138
gt0ne0d
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
+
1
≠
0
140
124
139
reccld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
j
+
1
∈
ℂ
141
26
adantr
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
N
∈
ℂ
142
119
141
mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
⋅
N
∈
ℂ
143
142
123
addcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
⋅
N
+
1
∈
ℂ
144
43
adantr
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
⋅
N
+
1
≠
0
145
143
144
reccld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
⋅
N
+
1
∈
ℂ
146
45
a1i
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
∈
ℕ
0
147
nnnn0
⊢
j
∈
ℕ
→
j
∈
ℕ
0
148
147
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
j
∈
ℕ
0
149
146
148
nn0mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
∈
ℕ
0
150
145
149
expcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
⋅
N
+
1
2
j
∈
ℂ
151
140
150
mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
j
+
1
1
2
⋅
N
+
1
2
j
∈
ℂ
152
111
117
118
151
fvmptd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
K
j
=
1
2
j
+
1
1
2
⋅
N
+
1
2
j
153
0red
⊢
j
∈
ℕ
→
0
∈
ℝ
154
1red
⊢
j
∈
ℕ
→
1
∈
ℝ
155
30
a1i
⊢
j
∈
ℕ
→
2
∈
ℝ
156
155
128
remulcld
⊢
j
∈
ℕ
→
2
j
∈
ℝ
157
156
154
readdcld
⊢
j
∈
ℕ
→
2
j
+
1
∈
ℝ
158
35
a1i
⊢
j
∈
ℕ
→
0
<
1
159
37
a1i
⊢
j
∈
ℕ
→
2
∈
ℝ
+
160
159
134
rpmulcld
⊢
j
∈
ℕ
→
2
j
∈
ℝ
+
161
154
160
ltaddrp2d
⊢
j
∈
ℕ
→
1
<
2
j
+
1
162
153
154
157
158
161
lttrd
⊢
j
∈
ℕ
→
0
<
2
j
+
1
163
162
gt0ne0d
⊢
j
∈
ℕ
→
2
j
+
1
≠
0
164
163
adantl
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
2
j
+
1
≠
0
165
124
164
reccld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
j
+
1
∈
ℂ
166
165
150
mulcld
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
1
2
j
+
1
1
2
⋅
N
+
1
2
j
∈
ℂ
167
152
166
eqeltrd
⊢
N
∈
ℕ
∧
j
∈
ℕ
→
K
j
∈
ℂ
168
eqid
⊢
n
∈
ℕ
⟼
1
+
2
n
2
log
n
+
1
n
−
1
=
n
∈
ℕ
⟼
1
+
2
n
2
log
n
+
1
n
−
1
169
1
2
168
3
stirlinglem9
⊢
N
∈
ℕ
→
seq
1
+
K
⇝
B
N
−
B
N
+
1
170
110
13
167
169
clim2ser
⊢
N
∈
ℕ
→
seq
1
+
1
+
K
⇝
B
N
-
B
N
+
1
-
seq
1
+
K
1
171
peano2nn
⊢
1
∈
ℕ
→
1
+
1
∈
ℕ
172
uznnssnn
⊢
1
+
1
∈
ℕ
→
ℤ
≥
1
+
1
⊆
ℕ
173
12
171
172
mp2b
⊢
ℤ
≥
1
+
1
⊆
ℕ
174
173
a1i
⊢
N
∈
ℕ
→
ℤ
≥
1
+
1
⊆
ℕ
175
174
sseld
⊢
N
∈
ℕ
→
j
∈
ℤ
≥
1
+
1
→
j
∈
ℕ
176
175
imdistani
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
N
∈
ℕ
∧
j
∈
ℕ
177
176
152
syl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
K
j
=
1
2
j
+
1
1
2
⋅
N
+
1
2
j
178
30
a1i
⊢
j
∈
ℤ
≥
1
+
1
→
2
∈
ℝ
179
eluzelre
⊢
j
∈
ℤ
≥
1
+
1
→
j
∈
ℝ
180
178
179
remulcld
⊢
j
∈
ℤ
≥
1
+
1
→
2
j
∈
ℝ
181
1red
⊢
j
∈
ℤ
≥
1
+
1
→
1
∈
ℝ
182
180
181
readdcld
⊢
j
∈
ℤ
≥
1
+
1
→
2
j
+
1
∈
ℝ
183
173
sseli
⊢
j
∈
ℤ
≥
1
+
1
→
j
∈
ℕ
184
183
163
syl
⊢
j
∈
ℤ
≥
1
+
1
→
2
j
+
1
≠
0
185
182
184
rereccld
⊢
j
∈
ℤ
≥
1
+
1
→
1
2
j
+
1
∈
ℝ
186
185
adantl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
1
2
j
+
1
∈
ℝ
187
34
adantr
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
⋅
N
+
1
∈
ℝ
188
43
adantr
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
⋅
N
+
1
≠
0
189
187
188
rereccld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
1
2
⋅
N
+
1
∈
ℝ
190
176
149
syl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
j
∈
ℕ
0
191
189
190
reexpcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
1
2
⋅
N
+
1
2
j
∈
ℝ
192
186
191
remulcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
1
2
j
+
1
1
2
⋅
N
+
1
2
j
∈
ℝ
193
177
192
eqeltrd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
K
j
∈
ℝ
194
1red
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
1
∈
ℝ
195
30
a1i
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
∈
ℝ
196
176
129
syl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
j
∈
ℝ
197
195
196
remulcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
j
∈
ℝ
198
87
a1i
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
2
199
0red
⊢
j
∈
ℤ
≥
1
+
1
→
0
∈
ℝ
200
87
a1i
⊢
j
∈
ℤ
≥
1
+
1
→
0
≤
2
201
1p1e2
⊢
1
+
1
=
2
202
eluzle
⊢
j
∈
ℤ
≥
1
+
1
→
1
+
1
≤
j
203
201
202
eqbrtrrid
⊢
j
∈
ℤ
≥
1
+
1
→
2
≤
j
204
199
178
179
200
203
letrd
⊢
j
∈
ℤ
≥
1
+
1
→
0
≤
j
205
204
adantl
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
j
206
195
196
198
205
mulge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
2
j
207
197
206
ge0p1rpd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
j
+
1
∈
ℝ
+
208
89
a1i
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
1
209
194
207
208
divge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
1
2
j
+
1
210
32
adantr
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
N
∈
ℝ
211
195
210
remulcld
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
⋅
N
∈
ℝ
212
94
adantr
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
N
213
195
210
198
212
mulge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
2
⋅
N
214
211
213
ge0p1rpd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
2
⋅
N
+
1
∈
ℝ
+
215
194
214
208
divge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
1
2
⋅
N
+
1
216
189
190
215
expge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
1
2
⋅
N
+
1
2
j
217
186
191
209
216
mulge0d
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
1
2
j
+
1
1
2
⋅
N
+
1
2
j
218
217
177
breqtrrd
⊢
N
∈
ℕ
∧
j
∈
ℤ
≥
1
+
1
→
0
≤
K
j
219
108
109
170
193
218
iserge0
⊢
N
∈
ℕ
→
0
≤
B
N
-
B
N
+
1
-
seq
1
+
K
1
220
seq1
⊢
1
∈
ℤ
→
seq
1
+
K
1
=
K
1
221
100
220
mp1i
⊢
N
∈
ℕ
→
seq
1
+
K
1
=
K
1
222
221
oveq2d
⊢
N
∈
ℕ
→
B
N
-
B
N
+
1
-
seq
1
+
K
1
=
B
N
-
B
N
+
1
-
K
1
223
219
222
breqtrd
⊢
N
∈
ℕ
→
0
≤
B
N
-
B
N
+
1
-
K
1
224
4
107
61
223
leadd1dd
⊢
N
∈
ℕ
→
0
+
K
1
≤
B
N
−
B
N
+
1
-
K
1
+
K
1
225
52
51
eqeltrd
⊢
N
∈
ℕ
→
K
1
∈
ℂ
226
225
addlidd
⊢
N
∈
ℕ
→
0
+
K
1
=
K
1
227
73
recnd
⊢
N
∈
ℕ
→
B
N
∈
ℂ
228
84
recnd
⊢
N
∈
ℕ
→
B
N
+
1
∈
ℂ
229
227
228
subcld
⊢
N
∈
ℕ
→
B
N
−
B
N
+
1
∈
ℂ
230
229
225
npcand
⊢
N
∈
ℕ
→
B
N
−
B
N
+
1
-
K
1
+
K
1
=
B
N
−
B
N
+
1
231
224
226
230
3brtr3d
⊢
N
∈
ℕ
→
K
1
≤
B
N
−
B
N
+
1
232
4
61
85
106
231
ltletrd
⊢
N
∈
ℕ
→
0
<
B
N
−
B
N
+
1
233
84
73
posdifd
⊢
N
∈
ℕ
→
B
N
+
1
<
B
N
↔
0
<
B
N
−
B
N
+
1
234
232
233
mpbird
⊢
N
∈
ℕ
→
B
N
+
1
<
B
N