Metamath Proof Explorer


Theorem stirlinglem13

Description: B is decreasing and has a lower bound, then it converges. Since B is log A , in another theorem it is proven that A converges as well. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses stirlinglem13.1 A=nn!2nnen
stirlinglem13.2 B=nlogAn
Assertion stirlinglem13 dBd

Proof

Step Hyp Ref Expression
1 stirlinglem13.1 A=nn!2nnen
2 stirlinglem13.2 B=nlogAn
3 vex yV
4 2 elrnmpt yVyranBny=logAn
5 3 4 ax-mp yranBny=logAn
6 simpr ny=logAny=logAn
7 1 stirlinglem2 nAn+
8 7 relogcld nlogAn
9 8 adantr ny=logAnlogAn
10 6 9 eqeltrd ny=logAny
11 10 rexlimiva ny=logAny
12 5 11 sylbi yranBy
13 12 ssriv ranB
14 1nn 1
15 1 stirlinglem2 1A1+
16 relogcl A1+logA1
17 14 15 16 mp2b logA1
18 nfcv _n1
19 nfcv _nlog
20 nfmpt1 _nnn!2nnen
21 1 20 nfcxfr _nA
22 21 18 nffv _nA1
23 19 22 nffv _nlogA1
24 2fveq3 n=1logAn=logA1
25 18 23 24 2 fvmptf 1logA1B1=logA1
26 14 17 25 mp2an B1=logA1
27 2fveq3 j=1logAj=logA1
28 27 rspceeqv 1B1=logA1jB1=logAj
29 14 26 28 mp2an jB1=logAj
30 26 17 eqeltri B1
31 nfcv _jlogAn
32 nfcv _nj
33 21 32 nffv _nAj
34 19 33 nffv _nlogAj
35 2fveq3 n=jlogAn=logAj
36 31 34 35 cbvmpt nlogAn=jlogAj
37 2 36 eqtri B=jlogAj
38 37 elrnmpt B1B1ranBjB1=logAj
39 30 38 ax-mp B1ranBjB1=logAj
40 29 39 mpbir B1ranB
41 40 ne0ii ranB
42 4re 4
43 4ne0 40
44 42 43 rereccli 14
45 30 44 resubcli B114
46 eqid n1nn+1=n1nn+1
47 1 2 46 stirlinglem12 jB114Bj
48 47 rgen jB114Bj
49 breq1 x=B114xBjB114Bj
50 49 ralbidv x=B114jxBjjB114Bj
51 50 rspcev B114jB114BjxjxBj
52 45 48 51 mp2an xjxBj
53 simpr jxBjyranByranB
54 8 rgen nlogAn
55 2 fnmpt nlogAnBFn
56 fvelrnb BFnyranBjBj=y
57 54 55 56 mp2b yranBjBj=y
58 53 57 sylib jxBjyranBjBj=y
59 nfra1 jjxBj
60 nfv jyranB
61 59 60 nfan jjxBjyranB
62 nfv jxy
63 simp1l jxBjyranBjBj=yjxBj
64 simp2 jxBjyranBjBj=yj
65 rsp jxBjjxBj
66 63 64 65 sylc jxBjyranBjBj=yxBj
67 simp3 jxBjyranBjBj=yBj=y
68 66 67 breqtrd jxBjyranBjBj=yxy
69 68 3exp jxBjyranBjBj=yxy
70 61 62 69 rexlimd jxBjyranBjBj=yxy
71 58 70 mpd jxBjyranBxy
72 71 ralrimiva jxBjyranBxy
73 72 reximi xjxBjxyranBxy
74 52 73 ax-mp xyranBxy
75 infrecl ranBranBxyranBxysupranB<
76 13 41 74 75 mp3an supranB<
77 nnuz =1
78 1zzd 1
79 2 8 fmpti B:
80 79 a1i B:
81 peano2nn jj+1
82 1 a1i jA=nn!2nnen
83 simpr jn=j+1n=j+1
84 83 fveq2d jn=j+1n!=j+1!
85 83 oveq2d jn=j+12n=2j+1
86 85 fveq2d jn=j+12n=2j+1
87 83 oveq1d jn=j+1ne=j+1e
88 87 83 oveq12d jn=j+1nen=j+1ej+1
89 86 88 oveq12d jn=j+12nnen=2j+1j+1ej+1
90 84 89 oveq12d jn=j+1n!2nnen=j+1!2j+1j+1ej+1
91 81 nnnn0d jj+10
92 faccl j+10j+1!
93 nncn j+1!j+1!
94 91 92 93 3syl jj+1!
95 2cnd j2
96 nncn jj
97 1cnd j1
98 96 97 addcld jj+1
99 95 98 mulcld j2j+1
100 99 sqrtcld j2j+1
101 ere e
102 101 recni e
103 102 a1i je
104 0re 0
105 epos 0<e
106 104 105 gtneii e0
107 106 a1i je0
108 98 103 107 divcld jj+1e
109 108 91 expcld jj+1ej+1
110 100 109 mulcld j2j+1j+1ej+1
111 2rp 2+
112 111 a1i j2+
113 nnre jj
114 104 a1i j0
115 1red j1
116 0le1 01
117 116 a1i j01
118 nnge1 j1j
119 114 115 113 117 118 letrd j0j
120 113 119 ge0p1rpd jj+1+
121 112 120 rpmulcld j2j+1+
122 121 sqrtgt0d j0<2j+1
123 122 gt0ne0d j2j+10
124 81 nnne0d jj+10
125 98 103 124 107 divne0d jj+1e0
126 nnz jj
127 126 peano2zd jj+1
128 108 125 127 expne0d jj+1ej+10
129 100 109 123 128 mulne0d j2j+1j+1ej+10
130 94 110 129 divcld jj+1!2j+1j+1ej+1
131 82 90 81 130 fvmptd jAj+1=j+1!2j+1j+1ej+1
132 nnrp j+1!j+1!+
133 91 92 132 3syl jj+1!+
134 121 rpsqrtcld j2j+1+
135 epr e+
136 135 a1i je+
137 120 136 rpdivcld jj+1e+
138 137 127 rpexpcld jj+1ej+1+
139 134 138 rpmulcld j2j+1j+1ej+1+
140 133 139 rpdivcld jj+1!2j+1j+1ej+1+
141 131 140 eqeltrd jAj+1+
142 141 relogcld jlogAj+1
143 nfcv _nj+1
144 21 143 nffv _nAj+1
145 19 144 nffv _nlogAj+1
146 2fveq3 n=j+1logAn=logAj+1
147 143 145 146 2 fvmptf j+1logAj+1Bj+1=logAj+1
148 81 142 147 syl2anc jBj+1=logAj+1
149 148 142 eqeltrd jBj+1
150 79 ffvelcdmi jBj
151 eqid z12z+112j+12z=z12z+112j+12z
152 1 2 151 stirlinglem11 jBj+1<Bj
153 149 150 152 ltled jBj+1Bj
154 153 adantl jBj+1Bj
155 52 a1i xjxBj
156 77 78 80 154 155 climinf BsupranB<
157 156 mptru BsupranB<
158 breq2 d=supranB<BdBsupranB<
159 158 rspcev supranB<BsupranB<dBd
160 76 157 159 mp2an dBd