Metamath Proof Explorer


Theorem stoweidlem36

Description: This lemma is used to prove the existence of a function p_t as in Lemma 1 of BrosowskiDeutsh p. 90 (at the beginning of Lemma 1): for all t in T - U, there exists a function p in the subalgebra, such that p_t ( t_0 ) = 0 , p_t ( t ) > 0, and 0 <= p_t <= 1. Z is used for t_0 , S is used for t e. T - U , h is used for p_t . G is used for (h_t)^2 and the final h is a normalized version of G ( divided by its norm, see the variable N ). (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem36.1 _ h Q
stoweidlem36.2 _ t H
stoweidlem36.3 _ t F
stoweidlem36.4 _ t G
stoweidlem36.5 t φ
stoweidlem36.6 K = topGen ran .
stoweidlem36.7 Q = h A | h Z = 0 t T 0 h t h t 1
stoweidlem36.8 T = J
stoweidlem36.9 G = t T F t F t
stoweidlem36.10 N = sup ran G <
stoweidlem36.11 H = t T G t N
stoweidlem36.12 φ J Comp
stoweidlem36.13 φ A J Cn K
stoweidlem36.14 φ f A g A t T f t g t A
stoweidlem36.15 φ x t T x A
stoweidlem36.16 φ S T
stoweidlem36.17 φ Z T
stoweidlem36.18 φ F A
stoweidlem36.19 φ F S F Z
stoweidlem36.20 φ F Z = 0
Assertion stoweidlem36 φ h h Q 0 < h S

Proof

Step Hyp Ref Expression
1 stoweidlem36.1 _ h Q
2 stoweidlem36.2 _ t H
3 stoweidlem36.3 _ t F
4 stoweidlem36.4 _ t G
5 stoweidlem36.5 t φ
6 stoweidlem36.6 K = topGen ran .
7 stoweidlem36.7 Q = h A | h Z = 0 t T 0 h t h t 1
8 stoweidlem36.8 T = J
9 stoweidlem36.9 G = t T F t F t
10 stoweidlem36.10 N = sup ran G <
11 stoweidlem36.11 H = t T G t N
12 stoweidlem36.12 φ J Comp
13 stoweidlem36.13 φ A J Cn K
14 stoweidlem36.14 φ f A g A t T f t g t A
15 stoweidlem36.15 φ x t T x A
16 stoweidlem36.16 φ S T
17 stoweidlem36.17 φ Z T
18 stoweidlem36.18 φ F A
19 stoweidlem36.19 φ F S F Z
20 stoweidlem36.20 φ F Z = 0
21 eqid J Cn K = J Cn K
22 3 nfeq2 t f = F
23 3 nfeq2 t g = F
24 22 23 14 stoweidlem6 φ F A F A t T F t F t A
25 18 18 24 mpd3an23 φ t T F t F t A
26 9 25 eqeltrid φ G A
27 13 26 sseldd φ G J Cn K
28 6 8 21 27 fcnre φ G : T
29 28 ffvelrnda φ t T G t
30 29 recnd φ t T G t
31 16 ne0d φ T
32 8 6 12 27 31 cncmpmax φ sup ran G < ran G sup ran G < s T G s sup ran G <
33 32 simp2d φ sup ran G <
34 10 33 eqeltrid φ N
35 34 recnd φ N
36 35 adantr φ t T N
37 0red φ 0
38 28 16 ffvelrnd φ G S
39 13 18 sseldd φ F J Cn K
40 6 8 21 39 fcnre φ F : T
41 40 16 ffvelrnd φ F S
42 19 20 neeqtrd φ F S 0
43 41 42 msqgt0d φ 0 < F S F S
44 41 41 remulcld φ F S F S
45 nfcv _ t S
46 3 45 nffv _ t F S
47 nfcv _ t ×
48 46 47 46 nfov _ t F S F S
49 fveq2 t = S F t = F S
50 49 49 oveq12d t = S F t F t = F S F S
51 45 48 50 9 fvmptf S T F S F S G S = F S F S
52 16 44 51 syl2anc φ G S = F S F S
53 43 52 breqtrrd φ 0 < G S
54 32 simp3d φ s T G s sup ran G <
55 fveq2 s = S G s = G S
56 55 breq1d s = S G s sup ran G < G S sup ran G <
57 56 rspccva s T G s sup ran G < S T G S sup ran G <
58 54 16 57 syl2anc φ G S sup ran G <
59 37 38 33 53 58 ltletrd φ 0 < sup ran G <
60 59 gt0ne0d φ sup ran G < 0
61 10 neeq1i N 0 sup ran G < 0
62 60 61 sylibr φ N 0
63 62 adantr φ t T N 0
64 30 36 63 divrecd φ t T G t N = G t 1 N
65 simpr φ t T t T
66 34 62 rereccld φ 1 N
67 66 adantr φ t T 1 N
68 eqid t T 1 N = t T 1 N
69 68 fvmpt2 t T 1 N t T 1 N t = 1 N
70 65 67 69 syl2anc φ t T t T 1 N t = 1 N
71 70 oveq2d φ t T G t t T 1 N t = G t 1 N
72 64 71 eqtr4d φ t T G t N = G t t T 1 N t
73 5 72 mpteq2da φ t T G t N = t T G t t T 1 N t
74 11 73 syl5eq φ H = t T G t t T 1 N t
75 15 stoweidlem4 φ 1 N t T 1 N A
76 66 75 mpdan φ t T 1 N A
77 4 nfeq2 t f = G
78 nfmpt1 _ t t T 1 N
79 78 nfeq2 t g = t T 1 N
80 77 79 14 stoweidlem6 φ G A t T 1 N A t T G t t T 1 N t A
81 26 76 80 mpd3an23 φ t T G t t T 1 N t A
82 74 81 eqeltrd φ H A
83 28 17 ffvelrnd φ G Z
84 83 34 62 redivcld φ G Z N
85 nfcv _ t Z
86 4 85 nffv _ t G Z
87 nfcv _ t ÷
88 nfcv _ t N
89 86 87 88 nfov _ t G Z N
90 fveq2 t = Z G t = G Z
91 90 oveq1d t = Z G t N = G Z N
92 85 89 91 11 fvmptf Z T G Z N H Z = G Z N
93 17 84 92 syl2anc φ H Z = G Z N
94 0re 0
95 20 94 eqeltrdi φ F Z
96 95 95 remulcld φ F Z F Z
97 3 85 nffv _ t F Z
98 97 47 97 nfov _ t F Z F Z
99 fveq2 t = Z F t = F Z
100 99 99 oveq12d t = Z F t F t = F Z F Z
101 85 98 100 9 fvmptf Z T F Z F Z G Z = F Z F Z
102 17 96 101 syl2anc φ G Z = F Z F Z
103 20 20 oveq12d φ F Z F Z = 0 0
104 0cn 0
105 104 mul02i 0 0 = 0
106 103 105 syl6eq φ F Z F Z = 0
107 102 106 eqtrd φ G Z = 0
108 107 oveq1d φ G Z N = 0 N
109 35 62 div0d φ 0 N = 0
110 93 108 109 3eqtrd φ H Z = 0
111 40 ffvelrnda φ t T F t
112 111 msqge0d φ t T 0 F t F t
113 111 111 remulcld φ t T F t F t
114 9 fvmpt2 t T F t F t G t = F t F t
115 65 113 114 syl2anc φ t T G t = F t F t
116 112 115 breqtrrd φ t T 0 G t
117 34 adantr φ t T N
118 59 10 breqtrrdi φ 0 < N
119 118 adantr φ t T 0 < N
120 divge0 G t 0 G t N 0 < N 0 G t N
121 29 116 117 119 120 syl22anc φ t T 0 G t N
122 29 117 63 redivcld φ t T G t N
123 11 fvmpt2 t T G t N H t = G t N
124 65 122 123 syl2anc φ t T H t = G t N
125 121 124 breqtrrd φ t T 0 H t
126 30 div1d φ t T G t 1 = G t
127 fveq2 s = t G s = G t
128 127 breq1d s = t G s sup ran G < G t sup ran G <
129 128 rspccva s T G s sup ran G < t T G t sup ran G <
130 54 129 sylan φ t T G t sup ran G <
131 130 10 breqtrrdi φ t T G t N
132 126 131 eqbrtrd φ t T G t 1 N
133 1red φ t T 1
134 0lt1 0 < 1
135 134 a1i φ t T 0 < 1
136 lediv23 G t N 0 < N 1 0 < 1 G t N 1 G t 1 N
137 29 117 119 133 135 136 syl122anc φ t T G t N 1 G t 1 N
138 132 137 mpbird φ t T G t N 1
139 124 138 eqbrtrd φ t T H t 1
140 125 139 jca φ t T 0 H t H t 1
141 140 ex φ t T 0 H t H t 1
142 5 141 ralrimi φ t T 0 H t H t 1
143 110 142 jca φ H Z = 0 t T 0 H t H t 1
144 fveq1 h = H h Z = H Z
145 144 eqeq1d h = H h Z = 0 H Z = 0
146 2 nfeq2 t h = H
147 fveq1 h = H h t = H t
148 147 breq2d h = H 0 h t 0 H t
149 147 breq1d h = H h t 1 H t 1
150 148 149 anbi12d h = H 0 h t h t 1 0 H t H t 1
151 146 150 ralbid h = H t T 0 h t h t 1 t T 0 H t H t 1
152 145 151 anbi12d h = H h Z = 0 t T 0 h t h t 1 H Z = 0 t T 0 H t H t 1
153 152 elrab H h A | h Z = 0 t T 0 h t h t 1 H A H Z = 0 t T 0 H t H t 1
154 82 143 153 sylanbrc φ H h A | h Z = 0 t T 0 h t h t 1
155 154 7 eleqtrrdi φ H Q
156 38 34 53 118 divgt0d φ 0 < G S N
157 38 34 62 redivcld φ G S N
158 4 45 nffv _ t G S
159 158 87 88 nfov _ t G S N
160 fveq2 t = S G t = G S
161 160 oveq1d t = S G t N = G S N
162 45 159 161 11 fvmptf S T G S N H S = G S N
163 16 157 162 syl2anc φ H S = G S N
164 156 163 breqtrrd φ 0 < H S
165 nfcv _ h H
166 1 nfel2 h H Q
167 nfv h 0 < H S
168 166 167 nfan h H Q 0 < H S
169 eleq1 h = H h Q H Q
170 fveq1 h = H h S = H S
171 170 breq2d h = H 0 < h S 0 < H S
172 169 171 anbi12d h = H h Q 0 < h S H Q 0 < H S
173 165 168 172 spcegf H Q H Q 0 < H S h h Q 0 < h S
174 173 anabsi5 H Q 0 < H S h h Q 0 < h S
175 155 164 174 syl2anc φ h h Q 0 < h S