Metamath Proof Explorer


Theorem sumcubes

Description: The sum of the first N perfect cubes is the sum of the first N nonnegative integers, squared. This is the Proof by Nicomachus from https://proofwiki.org/wiki/Sum_of_Sequence_of_Cubes using induction and index shifting to collect all the odd numbers. (Contributed by SN, 22-Mar-2025)

Ref Expression
Assertion sumcubes N0k=1Nk3=k=1Nk2

Proof

Step Hyp Ref Expression
1 oveq2 x=01x=10
2 1 sumeq1d x=0k=1xl=1kk2k+2l-1=k=10l=1kk2k+2l-1
3 1 sumeq1d x=0k=1xk=k=10k
4 3 oveq2d x=01k=1xk=1k=10k
5 4 sumeq1d x=0m=1k=1xk2m1=m=1k=10k2m1
6 2 5 eqeq12d x=0k=1xl=1kk2k+2l-1=m=1k=1xk2m1k=10l=1kk2k+2l-1=m=1k=10k2m1
7 oveq2 x=y1x=1y
8 7 sumeq1d x=yk=1xl=1kk2k+2l-1=k=1yl=1kk2k+2l-1
9 7 sumeq1d x=yk=1xk=k=1yk
10 9 oveq2d x=y1k=1xk=1k=1yk
11 10 sumeq1d x=ym=1k=1xk2m1=m=1k=1yk2m1
12 8 11 eqeq12d x=yk=1xl=1kk2k+2l-1=m=1k=1xk2m1k=1yl=1kk2k+2l-1=m=1k=1yk2m1
13 oveq2 x=y+11x=1y+1
14 13 sumeq1d x=y+1k=1xl=1kk2k+2l-1=k=1y+1l=1kk2k+2l-1
15 13 sumeq1d x=y+1k=1xk=k=1y+1k
16 15 oveq2d x=y+11k=1xk=1k=1y+1k
17 16 sumeq1d x=y+1m=1k=1xk2m1=m=1k=1y+1k2m1
18 14 17 eqeq12d x=y+1k=1xl=1kk2k+2l-1=m=1k=1xk2m1k=1y+1l=1kk2k+2l-1=m=1k=1y+1k2m1
19 oveq2 x=N1x=1N
20 19 sumeq1d x=Nk=1xl=1kk2k+2l-1=k=1Nl=1kk2k+2l-1
21 19 sumeq1d x=Nk=1xk=k=1Nk
22 21 oveq2d x=N1k=1xk=1k=1Nk
23 22 sumeq1d x=Nm=1k=1xk2m1=m=1k=1Nk2m1
24 20 23 eqeq12d x=Nk=1xl=1kk2k+2l-1=m=1k=1xk2m1k=1Nl=1kk2k+2l-1=m=1k=1Nk2m1
25 sum0 kl=1kk2k+2l-1=0
26 sum0 m2m1=0
27 25 26 eqtr4i kl=1kk2k+2l-1=m2m1
28 fz10 10=
29 28 sumeq1i k=10l=1kk2k+2l-1=kl=1kk2k+2l-1
30 28 sumeq1i k=10k=kk
31 sum0 kk=0
32 30 31 eqtri k=10k=0
33 32 oveq2i 1k=10k=10
34 33 28 eqtri 1k=10k=
35 34 sumeq1i m=1k=10k2m1=m2m1
36 27 29 35 3eqtr4i k=10l=1kk2k+2l-1=m=1k=10k2m1
37 simpr y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1yl=1kk2k+2l-1=m=1k=1yk2m1
38 fzfid y01yFin
39 elfznn k1yk
40 39 adantl y0k1yk
41 40 nnnn0d y0k1yk0
42 38 41 fsumnn0cl y0k=1yk0
43 42 nn0zd y0k=1yk
44 nn0p1nn k=1yk0k=1yk+1
45 42 44 syl y0k=1yk+1
46 45 nnzd y0k=1yk+1
47 peano2nn0 y0y+10
48 47 nn0zd y0y+1
49 43 48 zaddcld y0k=1yk+y+1
50 2cnd y0mk=1yk+1k=1yk+y+12
51 elfzelz mk=1yk+1k=1yk+y+1m
52 51 zcnd mk=1yk+1k=1yk+y+1m
53 52 adantl y0mk=1yk+1k=1yk+y+1m
54 50 53 mulcld y0mk=1yk+1k=1yk+y+12m
55 1cnd y0mk=1yk+1k=1yk+y+11
56 54 55 subcld y0mk=1yk+1k=1yk+y+12m1
57 oveq2 m=l+k=1yk2m=2l+k=1yk
58 57 oveq1d m=l+k=1yk2m1=2l+k=1yk1
59 43 46 49 56 58 fsumshftm y0m=k=1yk+1k=1yk+y+12m1=l=k=1yk+1-k=1ykk=1yk+y+1-k=1yk2l+k=1yk1
60 elfzelz k1yk
61 60 adantl y0k1yk
62 61 zred y0k1yk
63 38 62 fsumrecl y0k=1yk
64 63 recnd y0k=1yk
65 1cnd y01
66 64 65 pncan2d y0k=1yk+1-k=1yk=1
67 47 nn0cnd y0y+1
68 64 67 pncan2d y0k=1yk+y+1-k=1yk=y+1
69 66 68 oveq12d y0k=1yk+1-k=1ykk=1yk+y+1-k=1yk=1y+1
70 elfzelz lk=1yk+1-k=1ykk=1yk+y+1-k=1ykl
71 70 zcnd lk=1yk+1-k=1ykk=1yk+y+1-k=1ykl
72 2cnd y0l2
73 simpr y0ll
74 64 adantr y0lk=1yk
75 72 73 74 adddid y0l2l+k=1yk=2l+2k=1yk
76 75 oveq1d y0l2l+k=1yk1=2l+2k=1yk-1
77 72 73 mulcld y0l2l
78 72 74 mulcld y0l2k=1yk
79 1cnd y0l1
80 77 78 79 addsubassd y0l2l+2k=1yk-1=2l+2k=1yk-1
81 77 78 79 addsub12d y0l2l+2k=1yk-1=2k=1yk+2l-1
82 arisum y0k=1yk=y2+y2
83 82 oveq2d y02k=1yk=2y2+y2
84 nn0cn y0y
85 84 sqcld y0y2
86 85 84 addcld y0y2+y
87 2cnd y02
88 2ne0 20
89 88 a1i y020
90 86 87 89 divcan2d y02y2+y2=y2+y
91 binom21 yy+12=y2+2y+1
92 84 91 syl y0y+12=y2+2y+1
93 92 oveq1d y0y+12y+1=y2+2y+1-y+1
94 87 84 mulcld y02y
95 85 94 addcld y0y2+2y
96 95 84 65 pnpcan2d y0y2+2y+1-y+1=y2+2y-y
97 85 94 84 addsubassd y0y2+2y-y=y2+2y-y
98 84 2timesd y02y=y+y
99 84 84 98 mvrladdd y02yy=y
100 99 oveq2d y0y2+2y-y=y2+y
101 97 100 eqtrd y0y2+2y-y=y2+y
102 93 96 101 3eqtrrd y0y2+y=y+12y+1
103 83 90 102 3eqtrd y02k=1yk=y+12y+1
104 103 adantr y0l2k=1yk=y+12y+1
105 104 oveq1d y0l2k=1yk+2l-1=y+12y+1+2l-1
106 81 105 eqtrd y0l2l+2k=1yk-1=y+12y+1+2l-1
107 76 80 106 3eqtrd y0l2l+k=1yk1=y+12y+1+2l-1
108 71 107 sylan2 y0lk=1yk+1-k=1ykk=1yk+y+1-k=1yk2l+k=1yk1=y+12y+1+2l-1
109 69 108 sumeq12dv y0l=k=1yk+1-k=1ykk=1yk+y+1-k=1yk2l+k=1yk1=l=1y+1y+12y+1+2l-1
110 59 109 eqtr2d y0l=1y+1y+12y+1+2l-1=m=k=1yk+1k=1yk+y+12m1
111 110 adantr y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1l=1y+1y+12y+1+2l-1=m=k=1yk+1k=1yk+y+12m1
112 37 111 oveq12d y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1yl=1kk2k+2l-1+l=1y+1y+12y+1+2l-1=m=1k=1yk2m1+m=k=1yk+1k=1yk+y+12m1
113 id y0y0
114 fzfid y0k1y+11kFin
115 elfzelz k1y+1k
116 115 zcnd k1y+1k
117 116 sqcld k1y+1k2
118 117 116 subcld k1y+1k2k
119 2cnd l1k2
120 elfzelz l1kl
121 120 zcnd l1kl
122 119 121 mulcld l1k2l
123 1cnd l1k1
124 122 123 subcld l1k2l1
125 addcl k2k2l1k2k+2l-1
126 118 124 125 syl2an k1y+1l1kk2k+2l-1
127 126 adantll y0k1y+1l1kk2k+2l-1
128 114 127 fsumcl y0k1y+1l=1kk2k+2l-1
129 oveq2 k=y+11k=1y+1
130 oveq1 k=y+1k2=y+12
131 id k=y+1k=y+1
132 130 131 oveq12d k=y+1k2k=y+12y+1
133 132 oveq1d k=y+1k2k+2l-1=y+12y+1+2l-1
134 133 adantr k=y+1l1kk2k+2l-1=y+12y+1+2l-1
135 129 134 sumeq12dv k=y+1l=1kk2k+2l-1=l=1y+1y+12y+1+2l-1
136 113 128 135 fz1sump1 y0k=1y+1l=1kk2k+2l-1=k=1yl=1kk2k+2l-1+l=1y+1y+12y+1+2l-1
137 136 adantr y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1y+1l=1kk2k+2l-1=k=1yl=1kk2k+2l-1+l=1y+1y+12y+1+2l-1
138 116 adantl y0k1y+1k
139 113 138 131 fz1sump1 y0k=1y+1k=k=1yk+y+1
140 139 adantr y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1y+1k=k=1yk+y+1
141 140 oveq2d y0k=1yl=1kk2k+2l-1=m=1k=1yk2m11k=1y+1k=1k=1yk+y+1
142 141 sumeq1d y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1m=1k=1y+1k2m1=m=1k=1yk+y+12m1
143 63 ltp1d y0k=1yk<k=1yk+1
144 fzdisj k=1yk<k=1yk+11k=1ykk=1yk+1k=1yk+y+1=
145 143 144 syl y01k=1ykk=1yk+1k=1yk+y+1=
146 nnuz =1
147 45 146 eleqtrdi y0k=1yk+11
148 43 uzidd y0k=1ykk=1yk
149 uzaddcl k=1ykk=1yky+10k=1yk+y+1k=1yk
150 148 47 149 syl2anc y0k=1yk+y+1k=1yk
151 fzsplit2 k=1yk+11k=1yk+y+1k=1yk1k=1yk+y+1=1k=1ykk=1yk+1k=1yk+y+1
152 147 150 151 syl2anc y01k=1yk+y+1=1k=1ykk=1yk+1k=1yk+y+1
153 fzfid y01k=1yk+y+1Fin
154 2cnd y0m1k=1yk+y+12
155 elfzelz m1k=1yk+y+1m
156 155 zcnd m1k=1yk+y+1m
157 156 adantl y0m1k=1yk+y+1m
158 154 157 mulcld y0m1k=1yk+y+12m
159 1cnd y0m1k=1yk+y+11
160 158 159 subcld y0m1k=1yk+y+12m1
161 145 152 153 160 fsumsplit y0m=1k=1yk+y+12m1=m=1k=1yk2m1+m=k=1yk+1k=1yk+y+12m1
162 161 adantr y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1m=1k=1yk+y+12m1=m=1k=1yk2m1+m=k=1yk+1k=1yk+y+12m1
163 142 162 eqtrd y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1m=1k=1y+1k2m1=m=1k=1yk2m1+m=k=1yk+1k=1yk+y+12m1
164 112 137 163 3eqtr4d y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1y+1l=1kk2k+2l-1=m=1k=1y+1k2m1
165 164 ex y0k=1yl=1kk2k+2l-1=m=1k=1yk2m1k=1y+1l=1kk2k+2l-1=m=1k=1y+1k2m1
166 6 12 18 24 36 165 nn0ind N0k=1Nl=1kk2k+2l-1=m=1k=1Nk2m1
167 fz1ssnn 1N
168 nnssnn0 0
169 167 168 sstri 1N0
170 169 a1i N01N0
171 170 sselda N0k1Nk0
172 nicomachus k0l=1kk2k+2l-1=k3
173 171 172 syl N0k1Nl=1kk2k+2l-1=k3
174 173 sumeq2dv N0k=1Nl=1kk2k+2l-1=k=1Nk3
175 fzfid N01NFin
176 175 171 fsumnn0cl N0k=1Nk0
177 oddnumth k=1Nk0m=1k=1Nk2m1=k=1Nk2
178 176 177 syl N0m=1k=1Nk2m1=k=1Nk2
179 166 174 178 3eqtr3d N0k=1Nk3=k=1Nk2