Metamath Proof Explorer


Theorem superpos

Description: Superposition Principle. If A and B are distinct atoms, there exists a third atom, distinct from A and B , that is the superposition of A and B . Definition 3.4-3(a) in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion superpos AHAtomsBHAtomsABxHAtomsxAxBxAB

Proof

Step Hyp Ref Expression
1 atom1d AHAtomsyy0A=spany
2 atom1d BHAtomszz0B=spanz
3 reeanv yzy0A=spanyz0B=spanzyy0A=spanyzz0B=spanz
4 an4 y0A=spanyz0B=spanzy0z0A=spanyB=spanz
5 neeq1 A=spanyABspanyB
6 neeq2 B=spanzspanyBspanyspanz
7 5 6 sylan9bb A=spanyB=spanzABspanyspanz
8 7 adantl yzy0z0A=spanyB=spanzABspanyspanz
9 hvaddcl yzy+z
10 9 adantr yzspanyspanzy+z
11 hvaddeq0 yzy+z=0y=-1z
12 sneq y=-1zy=-1z
13 12 fveq2d y=-1zspany=span-1z
14 neg1cn 1
15 neg1ne0 10
16 spansncol z110span-1z=spanz
17 14 15 16 mp3an23 zspan-1z=spanz
18 13 17 sylan9eqr zy=-1zspany=spanz
19 18 ex zy=-1zspany=spanz
20 19 adantl yzy=-1zspany=spanz
21 11 20 sylbid yzy+z=0spany=spanz
22 21 necon3d yzspanyspanzy+z0
23 22 imp yzspanyspanzy+z0
24 spansna y+zy+z0spany+zHAtoms
25 10 23 24 syl2anc yzspanyspanzspany+zHAtoms
26 25 adantlr yzy0z0spanyspanzspany+zHAtoms
27 26 adantlr yzy0z0A=spanyB=spanzspanyspanzspany+zHAtoms
28 eqeq2 A=spanyspany+z=Aspany+z=spany
29 28 biimpd A=spanyspany+z=Aspany+z=spany
30 spansneleqi y+zspany+z=spanyy+zspany
31 9 30 syl yzspany+z=spanyy+zspany
32 elspansn yy+zspanyvy+z=vy
33 32 adantr yzy+zspanyvy+z=vy
34 addcl v1v+-1
35 14 34 mpan2 vv+-1
36 35 ad2antlr yzvy+z=vyv+-1
37 hvmulcl vyvy
38 37 ancoms yvvy
39 38 adantlr yzvvy
40 simpll yzvy
41 simplr yzvz
42 hvsubadd vyyzvy-y=zy+z=vy
43 39 40 41 42 syl3anc yzvvy-y=zy+z=vy
44 43 biimpar yzvy+z=vyvy-y=z
45 hvsubval vyyvy-y=vy+-1y
46 37 45 sylancom vyvy-y=vy+-1y
47 ax-hvdistr2 v1yv+-1y=vy+-1y
48 14 47 mp3an2 vyv+-1y=vy+-1y
49 46 48 eqtr4d vyvy-y=v+-1y
50 49 ancoms yvvy-y=v+-1y
51 50 adantlr yzvvy-y=v+-1y
52 51 adantr yzvy+z=vyvy-y=v+-1y
53 44 52 eqtr3d yzvy+z=vyz=v+-1y
54 oveq1 w=v+-1wy=v+-1y
55 54 rspceeqv v+-1z=v+-1ywz=wy
56 36 53 55 syl2anc yzvy+z=vywz=wy
57 56 rexlimdva2 yzvy+z=vywz=wy
58 33 57 sylbid yzy+zspanywz=wy
59 31 58 syld yzspany+z=spanywz=wy
60 elspansn yzspanywz=wy
61 60 adantr yzzspanywz=wy
62 59 61 sylibrd yzspany+z=spanyzspany
63 62 adantr yzz0spany+z=spanyzspany
64 spansneleq yz0zspanyspanz=spany
65 eqcom spanz=spanyspany=spanz
66 64 65 imbitrdi yz0zspanyspany=spanz
67 66 adantlr yzz0zspanyspany=spanz
68 63 67 syld yzz0spany+z=spanyspany=spanz
69 29 68 sylan9r yzz0A=spanyspany+z=Aspany=spanz
70 69 necon3d yzz0A=spanyspanyspanzspany+zA
71 70 adantlrl yzy0z0A=spanyspanyspanzspany+zA
72 71 adantrr yzy0z0A=spanyB=spanzspanyspanzspany+zA
73 72 imp yzy0z0A=spanyB=spanzspanyspanzspany+zA
74 eqeq2 B=spanzspany+z=Bspany+z=spanz
75 74 biimpd B=spanzspany+z=Bspany+z=spanz
76 spansneleqi y+zspany+z=spanzy+zspanz
77 9 76 syl yzspany+z=spanzy+zspanz
78 elspansn zy+zspanzvy+z=vz
79 78 adantl yzy+zspanzvy+z=vz
80 35 ad2antlr yzvy+z=vzv+-1
81 hvmulcl vzvz
82 81 ancoms zvvz
83 82 adantll yzvvz
84 hvsubadd vzzyvz-z=yz+y=vz
85 83 41 40 84 syl3anc yzvvz-z=yz+y=vz
86 ax-hvcom yzy+z=z+y
87 86 adantr yzvy+z=z+y
88 87 eqeq1d yzvy+z=vzz+y=vz
89 85 88 bitr4d yzvvz-z=yy+z=vz
90 89 biimpar yzvy+z=vzvz-z=y
91 hvsubval vzzvz-z=vz+-1z
92 81 91 sylancom vzvz-z=vz+-1z
93 ax-hvdistr2 v1zv+-1z=vz+-1z
94 14 93 mp3an2 vzv+-1z=vz+-1z
95 92 94 eqtr4d vzvz-z=v+-1z
96 95 ancoms zvvz-z=v+-1z
97 96 adantll yzvvz-z=v+-1z
98 97 adantr yzvy+z=vzvz-z=v+-1z
99 90 98 eqtr3d yzvy+z=vzy=v+-1z
100 oveq1 w=v+-1wz=v+-1z
101 100 rspceeqv v+-1y=v+-1zwy=wz
102 80 99 101 syl2anc yzvy+z=vzwy=wz
103 102 rexlimdva2 yzvy+z=vzwy=wz
104 79 103 sylbid yzy+zspanzwy=wz
105 77 104 syld yzspany+z=spanzwy=wz
106 elspansn zyspanzwy=wz
107 106 adantl yzyspanzwy=wz
108 105 107 sylibrd yzspany+z=spanzyspanz
109 108 adantr yzy0spany+z=spanzyspanz
110 spansneleq zy0yspanzspany=spanz
111 110 adantll yzy0yspanzspany=spanz
112 109 111 syld yzy0spany+z=spanzspany=spanz
113 75 112 sylan9r yzy0B=spanzspany+z=Bspany=spanz
114 113 necon3d yzy0B=spanzspanyspanzspany+zB
115 114 adantlrr yzy0z0B=spanzspanyspanzspany+zB
116 115 adantrl yzy0z0A=spanyB=spanzspanyspanzspany+zB
117 116 imp yzy0z0A=spanyB=spanzspanyspanzspany+zB
118 spanpr yzspany+zspanyz
119 118 adantr yzA=spanyB=spanzspany+zspanyz
120 oveq12 A=spanyB=spanzAB=spanyspanz
121 df-pr yz=yz
122 121 fveq2i spanyz=spanyz
123 snssi yy
124 snssi zz
125 spanun yzspanyz=spany+spanz
126 123 124 125 syl2an yzspanyz=spany+spanz
127 122 126 eqtrid yzspanyz=spany+spanz
128 spansnch yspanyC
129 spansnj spanyCzspany+spanz=spanyspanz
130 128 129 sylan yzspany+spanz=spanyspanz
131 127 130 eqtr2d yzspanyspanz=spanyz
132 120 131 sylan9eqr yzA=spanyB=spanzAB=spanyz
133 119 132 sseqtrrd yzA=spanyB=spanzspany+zAB
134 133 adantlr yzy0z0A=spanyB=spanzspany+zAB
135 134 adantr yzy0z0A=spanyB=spanzspanyspanzspany+zAB
136 neeq1 x=spany+zxAspany+zA
137 neeq1 x=spany+zxBspany+zB
138 sseq1 x=spany+zxABspany+zAB
139 136 137 138 3anbi123d x=spany+zxAxBxABspany+zAspany+zBspany+zAB
140 139 rspcev spany+zHAtomsspany+zAspany+zBspany+zABxHAtomsxAxBxAB
141 27 73 117 135 140 syl13anc yzy0z0A=spanyB=spanzspanyspanzxHAtomsxAxBxAB
142 141 ex yzy0z0A=spanyB=spanzspanyspanzxHAtomsxAxBxAB
143 8 142 sylbid yzy0z0A=spanyB=spanzABxHAtomsxAxBxAB
144 143 expl yzy0z0A=spanyB=spanzABxHAtomsxAxBxAB
145 4 144 biimtrid yzy0A=spanyz0B=spanzABxHAtomsxAxBxAB
146 145 rexlimivv yzy0A=spanyz0B=spanzABxHAtomsxAxBxAB
147 3 146 sylbir yy0A=spanyzz0B=spanzABxHAtomsxAxBxAB
148 1 2 147 syl2anb AHAtomsBHAtomsABxHAtomsxAxBxAB
149 148 3impia AHAtomsBHAtomsABxHAtomsxAxBxAB