Step |
Hyp |
Ref |
Expression |
1 |
|
atom1d |
|
2 |
|
atom1d |
|
3 |
|
reeanv |
|
4 |
|
an4 |
|
5 |
|
neeq1 |
|
6 |
|
neeq2 |
|
7 |
5 6
|
sylan9bb |
|
8 |
7
|
adantl |
|
9 |
|
hvaddcl |
|
10 |
9
|
adantr |
|
11 |
|
hvaddeq0 |
|
12 |
|
sneq |
|
13 |
12
|
fveq2d |
|
14 |
|
neg1cn |
|
15 |
|
neg1ne0 |
|
16 |
|
spansncol |
|
17 |
14 15 16
|
mp3an23 |
|
18 |
13 17
|
sylan9eqr |
|
19 |
18
|
ex |
|
20 |
19
|
adantl |
|
21 |
11 20
|
sylbid |
|
22 |
21
|
necon3d |
|
23 |
22
|
imp |
|
24 |
|
spansna |
|
25 |
10 23 24
|
syl2anc |
|
26 |
25
|
adantlr |
|
27 |
26
|
adantlr |
|
28 |
|
eqeq2 |
|
29 |
28
|
biimpd |
|
30 |
|
spansneleqi |
|
31 |
9 30
|
syl |
|
32 |
|
elspansn |
|
33 |
32
|
adantr |
|
34 |
|
addcl |
|
35 |
14 34
|
mpan2 |
|
36 |
35
|
ad2antlr |
|
37 |
|
hvmulcl |
|
38 |
37
|
ancoms |
|
39 |
38
|
adantlr |
|
40 |
|
simpll |
|
41 |
|
simplr |
|
42 |
|
hvsubadd |
|
43 |
39 40 41 42
|
syl3anc |
|
44 |
43
|
biimpar |
|
45 |
|
hvsubval |
|
46 |
37 45
|
sylancom |
|
47 |
|
ax-hvdistr2 |
|
48 |
14 47
|
mp3an2 |
|
49 |
46 48
|
eqtr4d |
|
50 |
49
|
ancoms |
|
51 |
50
|
adantlr |
|
52 |
51
|
adantr |
|
53 |
44 52
|
eqtr3d |
|
54 |
|
oveq1 |
|
55 |
54
|
rspceeqv |
|
56 |
36 53 55
|
syl2anc |
|
57 |
56
|
rexlimdva2 |
|
58 |
33 57
|
sylbid |
|
59 |
31 58
|
syld |
|
60 |
|
elspansn |
|
61 |
60
|
adantr |
|
62 |
59 61
|
sylibrd |
|
63 |
62
|
adantr |
|
64 |
|
spansneleq |
|
65 |
|
eqcom |
|
66 |
64 65
|
syl6ib |
|
67 |
66
|
adantlr |
|
68 |
63 67
|
syld |
|
69 |
29 68
|
sylan9r |
|
70 |
69
|
necon3d |
|
71 |
70
|
adantlrl |
|
72 |
71
|
adantrr |
|
73 |
72
|
imp |
|
74 |
|
eqeq2 |
|
75 |
74
|
biimpd |
|
76 |
|
spansneleqi |
|
77 |
9 76
|
syl |
|
78 |
|
elspansn |
|
79 |
78
|
adantl |
|
80 |
35
|
ad2antlr |
|
81 |
|
hvmulcl |
|
82 |
81
|
ancoms |
|
83 |
82
|
adantll |
|
84 |
|
hvsubadd |
|
85 |
83 41 40 84
|
syl3anc |
|
86 |
|
ax-hvcom |
|
87 |
86
|
adantr |
|
88 |
87
|
eqeq1d |
|
89 |
85 88
|
bitr4d |
|
90 |
89
|
biimpar |
|
91 |
|
hvsubval |
|
92 |
81 91
|
sylancom |
|
93 |
|
ax-hvdistr2 |
|
94 |
14 93
|
mp3an2 |
|
95 |
92 94
|
eqtr4d |
|
96 |
95
|
ancoms |
|
97 |
96
|
adantll |
|
98 |
97
|
adantr |
|
99 |
90 98
|
eqtr3d |
|
100 |
|
oveq1 |
|
101 |
100
|
rspceeqv |
|
102 |
80 99 101
|
syl2anc |
|
103 |
102
|
rexlimdva2 |
|
104 |
79 103
|
sylbid |
|
105 |
77 104
|
syld |
|
106 |
|
elspansn |
|
107 |
106
|
adantl |
|
108 |
105 107
|
sylibrd |
|
109 |
108
|
adantr |
|
110 |
|
spansneleq |
|
111 |
110
|
adantll |
|
112 |
109 111
|
syld |
|
113 |
75 112
|
sylan9r |
|
114 |
113
|
necon3d |
|
115 |
114
|
adantlrr |
|
116 |
115
|
adantrl |
|
117 |
116
|
imp |
|
118 |
|
spanpr |
|
119 |
118
|
adantr |
|
120 |
|
oveq12 |
|
121 |
|
df-pr |
|
122 |
121
|
fveq2i |
|
123 |
|
snssi |
|
124 |
|
snssi |
|
125 |
|
spanun |
|
126 |
123 124 125
|
syl2an |
|
127 |
122 126
|
eqtrid |
|
128 |
|
spansnch |
|
129 |
|
spansnj |
|
130 |
128 129
|
sylan |
|
131 |
127 130
|
eqtr2d |
|
132 |
120 131
|
sylan9eqr |
|
133 |
119 132
|
sseqtrrd |
|
134 |
133
|
adantlr |
|
135 |
134
|
adantr |
|
136 |
|
neeq1 |
|
137 |
|
neeq1 |
|
138 |
|
sseq1 |
|
139 |
136 137 138
|
3anbi123d |
|
140 |
139
|
rspcev |
|
141 |
27 73 117 135 140
|
syl13anc |
|
142 |
141
|
ex |
|
143 |
8 142
|
sylbid |
|
144 |
143
|
expl |
|
145 |
4 144
|
syl5bi |
|
146 |
145
|
rexlimivv |
|
147 |
3 146
|
sylbir |
|
148 |
1 2 147
|
syl2anb |
|
149 |
148
|
3impia |
|