Metamath Proof Explorer


Theorem swrdccatin2

Description: The subword of a concatenation of two words within the second of the concatenated words. (Contributed by Alexander van der Vekens, 28-Mar-2018) (Revised by Alexander van der Vekens, 27-May-2018)

Ref Expression
Hypothesis swrdccatin2.l L=A
Assertion swrdccatin2 AWordVBWordVMLNNLL+BA++BsubstrMN=BsubstrMLNL

Proof

Step Hyp Ref Expression
1 swrdccatin2.l L=A
2 oveq1 L=ALN=AN
3 2 eleq2d L=AMLNMAN
4 id L=AL=A
5 oveq1 L=AL+B=A+B
6 4 5 oveq12d L=ALL+B=AA+B
7 6 eleq2d L=ANLL+BNAA+B
8 3 7 anbi12d L=AMLNNLL+BMANNAA+B
9 1 8 ax-mp MLNNLL+BMANNAA+B
10 lencl AWordVA0
11 elnn0uz A0A0
12 fzss1 A0AN0N
13 11 12 sylbi A0AN0N
14 13 sseld A0MANM0N
15 fzss1 A0AA+B0A+B
16 11 15 sylbi A0AA+B0A+B
17 16 sseld A0NAA+BN0A+B
18 14 17 anim12d A0MANNAA+BM0NN0A+B
19 10 18 syl AWordVMANNAA+BM0NN0A+B
20 19 adantr AWordVBWordVMANNAA+BM0NN0A+B
21 9 20 biimtrid AWordVBWordVMLNNLL+BM0NN0A+B
22 21 imp AWordVBWordVMLNNLL+BM0NN0A+B
23 swrdccatfn AWordVBWordVM0NN0A+BA++BsubstrMNFn0..^NM
24 22 23 syldan AWordVBWordVMLNNLL+BA++BsubstrMNFn0..^NM
25 fzmmmeqm MLNN-L-ML=NM
26 25 oveq2d MLN0..^N-L-ML=0..^NM
27 26 fneq2d MLNA++BsubstrMNFn0..^N-L-MLA++BsubstrMNFn0..^NM
28 27 ad2antrl AWordVBWordVMLNNLL+BA++BsubstrMNFn0..^N-L-MLA++BsubstrMNFn0..^NM
29 24 28 mpbird AWordVBWordVMLNNLL+BA++BsubstrMNFn0..^N-L-ML
30 simplr AWordVBWordVMLNNLL+BBWordV
31 elfzmlbm MLNML0NL
32 31 ad2antrl AWordVBWordVMLNNLL+BML0NL
33 lencl BWordVB0
34 33 nn0zd BWordVB
35 34 adantl AWordVBWordVB
36 elfzmlbp BNLL+BNL0B
37 35 36 sylan AWordVBWordVNLL+BNL0B
38 37 adantrl AWordVBWordVMLNNLL+BNL0B
39 swrdvalfn BWordVML0NLNL0BBsubstrMLNLFn0..^N-L-ML
40 30 32 38 39 syl3anc AWordVBWordVMLNNLL+BBsubstrMLNLFn0..^N-L-ML
41 simpll AWordVBWordVMLNNLL+Bk0..^N-L-MLAWordVBWordV
42 elfzelz MLNM
43 zaddcl kMk+M
44 43 expcom Mkk+M
45 42 44 syl MLNkk+M
46 45 ad2antrl AWordVBWordVMLNNLL+Bkk+M
47 elfzoelz k0..^N-L-MLk
48 46 47 impel AWordVBWordVMLNNLL+Bk0..^N-L-MLk+M
49 df-3an AWordVBWordVk+MAWordVBWordVk+M
50 41 48 49 sylanbrc AWordVBWordVMLNNLL+Bk0..^N-L-MLAWordVBWordVk+M
51 ccatsymb AWordVBWordVk+MA++Bk+M=ifk+M<AAk+MBk+M-A
52 50 51 syl AWordVBWordVMLNNLL+Bk0..^N-L-MLA++Bk+M=ifk+M<AAk+MBk+M-A
53 elfz2 MLNLNMLMMN
54 zre LL
55 zre MM
56 54 55 anim12i LMLM
57 elnn0z k0k0k
58 zre kk
59 0re 0
60 59 jctl L0L
61 60 ad2antrl kLM0L
62 id kMkM
63 62 adantrl kLMkM
64 le2add 0LkM0kLM0+Lk+M
65 61 63 64 syl2anc kLM0kLM0+Lk+M
66 recn LL
67 66 addlidd L0+L=L
68 67 ad2antrl kLM0+L=L
69 68 breq1d kLM0+Lk+MLk+M
70 65 69 sylibd kLM0kLMLk+M
71 simprl kLML
72 readdcl kMk+M
73 72 adantrl kLMk+M
74 71 73 lenltd kLMLk+M¬k+M<L
75 70 74 sylibd kLM0kLM¬k+M<L
76 75 expd kLM0kLM¬k+M<L
77 76 com12 0kkLMLM¬k+M<L
78 77 expd 0kkLMLM¬k+M<L
79 58 78 mpan9 k0kLMLM¬k+M<L
80 57 79 sylbi k0LMLM¬k+M<L
81 56 80 mpan9 LMk0LM¬k+M<L
82 1 breq2i k+M<Lk+M<A
83 82 notbii ¬k+M<L¬k+M<A
84 81 83 imbitrdi LMk0LM¬k+M<A
85 84 ex LMk0LM¬k+M<A
86 85 com23 LMLMk0¬k+M<A
87 86 3adant2 LNMLMk0¬k+M<A
88 87 imp LNMLMk0¬k+M<A
89 88 adantrr LNMLMMNk0¬k+M<A
90 53 89 sylbi MLNk0¬k+M<A
91 90 ad2antrl AWordVBWordVMLNNLL+Bk0¬k+M<A
92 elfzonn0 k0..^N-L-MLk0
93 91 92 impel AWordVBWordVMLNNLL+Bk0..^N-L-ML¬k+M<A
94 93 iffalsed AWordVBWordVMLNNLL+Bk0..^N-L-MLifk+M<AAk+MBk+M-A=Bk+M-A
95 zcn kk
96 95 adantl LMkk
97 zcn MM
98 97 ad2antlr LMkM
99 zcn LL
100 99 ad2antrr LMkL
101 96 98 100 addsubassd LMkk+M-L=k+M-L
102 oveq2 L=Ak+M-L=k+M-A
103 102 eqeq1d L=Ak+M-L=k+M-Lk+M-A=k+M-L
104 101 103 imbitrid L=ALMkk+M-A=k+M-L
105 1 104 ax-mp LMkk+M-A=k+M-L
106 105 ex LMkk+M-A=k+M-L
107 106 3adant2 LNMkk+M-A=k+M-L
108 107 adantr LNMLMMNkk+M-A=k+M-L
109 53 108 sylbi MLNkk+M-A=k+M-L
110 109 ad2antrl AWordVBWordVMLNNLL+Bkk+M-A=k+M-L
111 110 47 impel AWordVBWordVMLNNLL+Bk0..^N-L-MLk+M-A=k+M-L
112 111 fveq2d AWordVBWordVMLNNLL+Bk0..^N-L-MLBk+M-A=Bk+M-L
113 52 94 112 3eqtrd AWordVBWordVMLNNLL+Bk0..^N-L-MLA++Bk+M=Bk+M-L
114 ccatcl AWordVBWordVA++BWordV
115 114 adantr AWordVBWordVMLNNLL+BA++BWordV
116 11 biimpi A0A0
117 1 116 eqeltrid A0L0
118 fzss1 L0LN0N
119 10 117 118 3syl AWordVLN0N
120 119 sselda AWordVMLNM0N
121 120 ad2ant2r AWordVBWordVMLNNLL+BM0N
122 1 7 ax-mp NLL+BNAA+B
123 10 116 15 3syl AWordVAA+B0A+B
124 123 adantr AWordVBWordVAA+B0A+B
125 124 sseld AWordVBWordVNAA+BN0A+B
126 125 impcom NAA+BAWordVBWordVN0A+B
127 ccatlen AWordVBWordVA++B=A+B
128 127 oveq2d AWordVBWordV0A++B=0A+B
129 128 eleq2d AWordVBWordVN0A++BN0A+B
130 129 adantl NAA+BAWordVBWordVN0A++BN0A+B
131 126 130 mpbird NAA+BAWordVBWordVN0A++B
132 131 ex NAA+BAWordVBWordVN0A++B
133 122 132 sylbi NLL+BAWordVBWordVN0A++B
134 133 impcom AWordVBWordVNLL+BN0A++B
135 134 adantrl AWordVBWordVMLNNLL+BN0A++B
136 115 121 135 3jca AWordVBWordVMLNNLL+BA++BWordVM0NN0A++B
137 26 eleq2d MLNk0..^N-L-MLk0..^NM
138 137 ad2antrl AWordVBWordVMLNNLL+Bk0..^N-L-MLk0..^NM
139 138 biimpa AWordVBWordVMLNNLL+Bk0..^N-L-MLk0..^NM
140 swrdfv A++BWordVM0NN0A++Bk0..^NMA++BsubstrMNk=A++Bk+M
141 136 139 140 syl2an2r AWordVBWordVMLNNLL+Bk0..^N-L-MLA++BsubstrMNk=A++Bk+M
142 34 36 sylan BWordVNLL+BNL0B
143 142 ad2ant2l AWordVBWordVMLNNLL+BNL0B
144 30 32 143 3jca AWordVBWordVMLNNLL+BBWordVML0NLNL0B
145 swrdfv BWordVML0NLNL0Bk0..^N-L-MLBsubstrMLNLk=Bk+M-L
146 144 145 sylan AWordVBWordVMLNNLL+Bk0..^N-L-MLBsubstrMLNLk=Bk+M-L
147 113 141 146 3eqtr4d AWordVBWordVMLNNLL+Bk0..^N-L-MLA++BsubstrMNk=BsubstrMLNLk
148 29 40 147 eqfnfvd AWordVBWordVMLNNLL+BA++BsubstrMN=BsubstrMLNL
149 148 ex AWordVBWordVMLNNLL+BA++BsubstrMN=BsubstrMLNL