Metamath Proof Explorer


Theorem sylow1lem3

Description: Lemma for sylow1 . One of the orbits of the group action has p-adic valuation less than the prime count of the set S . (Contributed by Mario Carneiro, 15-Jan-2015)

Ref Expression
Hypotheses sylow1.x X = Base G
sylow1.g φ G Grp
sylow1.f φ X Fin
sylow1.p φ P
sylow1.n φ N 0
sylow1.d φ P N X
sylow1lem.a + ˙ = + G
sylow1lem.s S = s 𝒫 X | s = P N
sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
sylow1lem3.1 ˙ = x y | x y S g X g ˙ x = y
Assertion sylow1lem3 φ w S P pCnt w ˙ P pCnt X N

Proof

Step Hyp Ref Expression
1 sylow1.x X = Base G
2 sylow1.g φ G Grp
3 sylow1.f φ X Fin
4 sylow1.p φ P
5 sylow1.n φ N 0
6 sylow1.d φ P N X
7 sylow1lem.a + ˙ = + G
8 sylow1lem.s S = s 𝒫 X | s = P N
9 sylow1lem.m ˙ = x X , y S ran z y x + ˙ z
10 sylow1lem3.1 ˙ = x y | x y S g X g ˙ x = y
11 1 2 3 4 5 6 7 8 sylow1lem1 φ S P pCnt S = P pCnt X N
12 11 simpld φ S
13 pcndvds P S ¬ P P pCnt S + 1 S
14 4 12 13 syl2anc φ ¬ P P pCnt S + 1 S
15 11 simprd φ P pCnt S = P pCnt X N
16 15 oveq1d φ P pCnt S + 1 = P pCnt X - N + 1
17 16 oveq2d φ P P pCnt S + 1 = P P pCnt X - N + 1
18 1 2 3 4 5 6 7 8 9 sylow1lem2 φ ˙ G GrpAct S
19 10 1 gaorber ˙ G GrpAct S ˙ Er S
20 18 19 syl φ ˙ Er S
21 pwfi X Fin 𝒫 X Fin
22 3 21 sylib φ 𝒫 X Fin
23 8 ssrab3 S 𝒫 X
24 ssfi 𝒫 X Fin S 𝒫 X S Fin
25 22 23 24 sylancl φ S Fin
26 20 25 qshash φ S = z S / ˙ z
27 17 26 breq12d φ P P pCnt S + 1 S P P pCnt X - N + 1 z S / ˙ z
28 14 27 mtbid φ ¬ P P pCnt X - N + 1 z S / ˙ z
29 pwfi S Fin 𝒫 S Fin
30 25 29 sylib φ 𝒫 S Fin
31 20 qsss φ S / ˙ 𝒫 S
32 30 31 ssfid φ S / ˙ Fin
33 32 adantr φ a S / ˙ ¬ P pCnt a P pCnt X N S / ˙ Fin
34 prmnn P P
35 4 34 syl φ P
36 4 12 pccld φ P pCnt S 0
37 15 36 eqeltrrd φ P pCnt X N 0
38 peano2nn0 P pCnt X N 0 P pCnt X - N + 1 0
39 37 38 syl φ P pCnt X - N + 1 0
40 35 39 nnexpcld φ P P pCnt X - N + 1
41 40 nnzd φ P P pCnt X - N + 1
42 41 adantr φ a S / ˙ ¬ P pCnt a P pCnt X N P P pCnt X - N + 1
43 erdm ˙ Er S dom ˙ = S
44 20 43 syl φ dom ˙ = S
45 elqsn0 dom ˙ = S z S / ˙ z
46 44 45 sylan φ z S / ˙ z
47 25 adantr φ z S / ˙ S Fin
48 31 sselda φ z S / ˙ z 𝒫 S
49 48 elpwid φ z S / ˙ z S
50 47 49 ssfid φ z S / ˙ z Fin
51 hashnncl z Fin z z
52 50 51 syl φ z S / ˙ z z
53 46 52 mpbird φ z S / ˙ z
54 53 adantlr φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ z
55 54 nnzd φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ z
56 fveq2 a = z a = z
57 56 oveq2d a = z P pCnt a = P pCnt z
58 57 breq1d a = z P pCnt a P pCnt X N P pCnt z P pCnt X N
59 58 notbid a = z ¬ P pCnt a P pCnt X N ¬ P pCnt z P pCnt X N
60 59 rspccva a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ ¬ P pCnt z P pCnt X N
61 60 adantll φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ ¬ P pCnt z P pCnt X N
62 1 grpbn0 G Grp X
63 2 62 syl φ X
64 hashnncl X Fin X X
65 3 64 syl φ X X
66 63 65 mpbird φ X
67 4 66 pccld φ P pCnt X 0
68 67 nn0zd φ P pCnt X
69 5 nn0zd φ N
70 68 69 zsubcld φ P pCnt X N
71 70 ad2antrr φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X N
72 71 zred φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X N
73 4 ad2antrr φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P
74 73 54 pccld φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt z 0
75 74 nn0zd φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt z
76 75 zred φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt z
77 72 76 ltnled φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X N < P pCnt z ¬ P pCnt z P pCnt X N
78 61 77 mpbird φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X N < P pCnt z
79 zltp1le P pCnt X N P pCnt z P pCnt X N < P pCnt z P pCnt X - N + 1 P pCnt z
80 71 75 79 syl2anc φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X N < P pCnt z P pCnt X - N + 1 P pCnt z
81 78 80 mpbid φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X - N + 1 P pCnt z
82 39 ad2antrr φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X - N + 1 0
83 pcdvdsb P z P pCnt X - N + 1 0 P pCnt X - N + 1 P pCnt z P P pCnt X - N + 1 z
84 73 55 82 83 syl3anc φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P pCnt X - N + 1 P pCnt z P P pCnt X - N + 1 z
85 81 84 mpbid φ a S / ˙ ¬ P pCnt a P pCnt X N z S / ˙ P P pCnt X - N + 1 z
86 33 42 55 85 fsumdvds φ a S / ˙ ¬ P pCnt a P pCnt X N P P pCnt X - N + 1 z S / ˙ z
87 28 86 mtand φ ¬ a S / ˙ ¬ P pCnt a P pCnt X N
88 dfrex2 a S / ˙ P pCnt a P pCnt X N ¬ a S / ˙ ¬ P pCnt a P pCnt X N
89 87 88 sylibr φ a S / ˙ P pCnt a P pCnt X N
90 eqid S / ˙ = S / ˙
91 fveq2 z ˙ = a z ˙ = a
92 91 oveq2d z ˙ = a P pCnt z ˙ = P pCnt a
93 92 breq1d z ˙ = a P pCnt z ˙ P pCnt X N P pCnt a P pCnt X N
94 93 imbi1d z ˙ = a P pCnt z ˙ P pCnt X N w S P pCnt w ˙ P pCnt X N P pCnt a P pCnt X N w S P pCnt w ˙ P pCnt X N
95 eceq1 w = z w ˙ = z ˙
96 95 fveq2d w = z w ˙ = z ˙
97 96 oveq2d w = z P pCnt w ˙ = P pCnt z ˙
98 97 breq1d w = z P pCnt w ˙ P pCnt X N P pCnt z ˙ P pCnt X N
99 98 rspcev z S P pCnt z ˙ P pCnt X N w S P pCnt w ˙ P pCnt X N
100 99 ex z S P pCnt z ˙ P pCnt X N w S P pCnt w ˙ P pCnt X N
101 100 adantl φ z S P pCnt z ˙ P pCnt X N w S P pCnt w ˙ P pCnt X N
102 90 94 101 ectocld φ a S / ˙ P pCnt a P pCnt X N w S P pCnt w ˙ P pCnt X N
103 102 rexlimdva φ a S / ˙ P pCnt a P pCnt X N w S P pCnt w ˙ P pCnt X N
104 89 103 mpd φ w S P pCnt w ˙ P pCnt X N