Metamath Proof Explorer


Theorem tsmsres

Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015) (Revised by AV, 25-Jul-2019)

Ref Expression
Hypotheses tsmsres.b B=BaseG
tsmsres.z 0˙=0G
tsmsres.1 φGCMnd
tsmsres.2 φGTopSp
tsmsres.a φAV
tsmsres.f φF:AB
tsmsres.s φFsupp0˙W
Assertion tsmsres φGtsumsFW=GtsumsF

Proof

Step Hyp Ref Expression
1 tsmsres.b B=BaseG
2 tsmsres.z 0˙=0G
3 tsmsres.1 φGCMnd
4 tsmsres.2 φGTopSp
5 tsmsres.a φAV
6 tsmsres.f φF:AB
7 tsmsres.s φFsupp0˙W
8 inss1 AWA
9 8 sspwi 𝒫AW𝒫A
10 ssrin 𝒫AW𝒫A𝒫AWFin𝒫AFin
11 9 10 ax-mp 𝒫AWFin𝒫AFin
12 simpr φa𝒫AWFina𝒫AWFin
13 11 12 sselid φa𝒫AWFina𝒫AFin
14 elfpw z𝒫AFinzAzFin
15 14 simplbi z𝒫AFinzA
16 15 adantl φa𝒫AWFinz𝒫AFinzA
17 16 ssrind φa𝒫AWFinz𝒫AFinzWAW
18 elinel2 z𝒫AFinzFin
19 18 adantl φa𝒫AWFinz𝒫AFinzFin
20 inss1 zWz
21 ssfi zFinzWzzWFin
22 19 20 21 sylancl φa𝒫AWFinz𝒫AFinzWFin
23 elfpw zW𝒫AWFinzWAWzWFin
24 17 22 23 sylanbrc φa𝒫AWFinz𝒫AFinzW𝒫AWFin
25 sseq2 b=zWabazW
26 ssin azaWazW
27 25 26 bitr4di b=zWabazaW
28 reseq2 b=zWFWb=FWzW
29 inss2 zWW
30 resabs1 zWWFWzW=FzW
31 29 30 ax-mp FWzW=FzW
32 28 31 eqtrdi b=zWFWb=FzW
33 32 oveq2d b=zWGFWb=GFzW
34 33 eleq1d b=zWGFWbuGFzWu
35 27 34 imbi12d b=zWabGFWbuazaWGFzWu
36 35 rspcv zW𝒫AWFinb𝒫AWFinabGFWbuazaWGFzWu
37 24 36 syl φa𝒫AWFinz𝒫AFinb𝒫AWFinabGFWbuazaWGFzWu
38 elfpw a𝒫AWFinaAWaFin
39 38 simplbi a𝒫AWFinaAW
40 39 ad2antlr φa𝒫AWFinz𝒫AFinaAW
41 inss2 AWW
42 40 41 sstrdi φa𝒫AWFinz𝒫AFinaW
43 42 biantrud φa𝒫AWFinz𝒫AFinazazaW
44 3 ad2antrr φa𝒫AWFinz𝒫AFinGCMnd
45 6 ad2antrr φa𝒫AWFinz𝒫AFinF:AB
46 45 16 fssresd φa𝒫AWFinz𝒫AFinFz:zB
47 6 5 fexd φFV
48 47 ad2antrr φa𝒫AWFinz𝒫AFinFV
49 2 fvexi 0˙V
50 ressuppss FV0˙VFzsupp0˙Fsupp0˙
51 48 49 50 sylancl φa𝒫AWFinz𝒫AFinFzsupp0˙Fsupp0˙
52 7 ad2antrr φa𝒫AWFinz𝒫AFinFsupp0˙W
53 51 52 sstrd φa𝒫AWFinz𝒫AFinFzsupp0˙W
54 49 a1i φa𝒫AWFinz𝒫AFin0˙V
55 46 19 54 fdmfifsupp φa𝒫AWFinz𝒫AFinfinSupp0˙Fz
56 1 2 44 19 46 53 55 gsumres φa𝒫AWFinz𝒫AFinGFzW=GFz
57 resres FzW=FzW
58 57 oveq2i GFzW=GFzW
59 56 58 eqtr3di φa𝒫AWFinz𝒫AFinGFz=GFzW
60 59 eleq1d φa𝒫AWFinz𝒫AFinGFzuGFzWu
61 43 60 imbi12d φa𝒫AWFinz𝒫AFinazGFzuazaWGFzWu
62 37 61 sylibrd φa𝒫AWFinz𝒫AFinb𝒫AWFinabGFWbuazGFzu
63 62 ralrimdva φa𝒫AWFinb𝒫AWFinabGFWbuz𝒫AFinazGFzu
64 sseq1 y=ayzaz
65 64 rspceaimv a𝒫AFinz𝒫AFinazGFzuy𝒫AFinz𝒫AFinyzGFzu
66 13 63 65 syl6an φa𝒫AWFinb𝒫AWFinabGFWbuy𝒫AFinz𝒫AFinyzGFzu
67 66 rexlimdva φa𝒫AWFinb𝒫AWFinabGFWbuy𝒫AFinz𝒫AFinyzGFzu
68 elfpw y𝒫AFinyAyFin
69 68 simplbi y𝒫AFinyA
70 69 adantl φy𝒫AFinyA
71 70 ssrind φy𝒫AFinyWAW
72 elinel2 y𝒫AFinyFin
73 72 adantl φy𝒫AFinyFin
74 inss1 yWy
75 ssfi yFinyWyyWFin
76 73 74 75 sylancl φy𝒫AFinyWFin
77 elfpw yW𝒫AWFinyWAWyWFin
78 71 76 77 sylanbrc φy𝒫AFinyW𝒫AWFin
79 69 ad2antlr φy𝒫AFinb𝒫AWFinyA
80 elfpw b𝒫AWFinbAWbFin
81 80 simplbi b𝒫AWFinbAW
82 81 adantl φy𝒫AFinb𝒫AWFinbAW
83 82 8 sstrdi φy𝒫AFinb𝒫AWFinbA
84 79 83 unssd φy𝒫AFinb𝒫AWFinybA
85 elinel2 b𝒫AWFinbFin
86 unfi yFinbFinybFin
87 73 85 86 syl2an φy𝒫AFinb𝒫AWFinybFin
88 elfpw yb𝒫AFinybAybFin
89 84 87 88 sylanbrc φy𝒫AFinb𝒫AWFinyb𝒫AFin
90 ssun1 yyb
91 id z=ybz=yb
92 90 91 sseqtrrid z=ybyz
93 pm5.5 yzyzGFzuGFzu
94 92 93 syl z=ybyzGFzuGFzu
95 reseq2 z=ybFz=Fyb
96 95 oveq2d z=ybGFz=GFyb
97 96 eleq1d z=ybGFzuGFybu
98 94 97 bitrd z=ybyzGFzuGFybu
99 98 rspcv yb𝒫AFinz𝒫AFinyzGFzuGFybu
100 89 99 syl φy𝒫AFinb𝒫AWFinz𝒫AFinyzGFzuGFybu
101 3 ad2antrr φy𝒫AFinb𝒫AWFinyWbGCMnd
102 87 adantrr φy𝒫AFinb𝒫AWFinyWbybFin
103 6 ad2antrr φy𝒫AFinb𝒫AWFinyWbF:AB
104 84 adantrr φy𝒫AFinb𝒫AWFinyWbybA
105 103 104 fssresd φy𝒫AFinb𝒫AWFinyWbFyb:ybB
106 47 49 jctir φFV0˙V
107 106 ad2antrr φy𝒫AFinb𝒫AWFinyWbFV0˙V
108 ressuppss FV0˙VFybsupp0˙Fsupp0˙
109 107 108 syl φy𝒫AFinb𝒫AWFinyWbFybsupp0˙Fsupp0˙
110 7 ad2antrr φy𝒫AFinb𝒫AWFinyWbFsupp0˙W
111 109 110 sstrd φy𝒫AFinb𝒫AWFinyWbFybsupp0˙W
112 49 a1i φy𝒫AFinb𝒫AWFinyWb0˙V
113 105 102 112 fdmfifsupp φy𝒫AFinb𝒫AWFinyWbfinSupp0˙Fyb
114 1 2 101 102 105 111 113 gsumres φy𝒫AFinb𝒫AWFinyWbGFybW=GFyb
115 resres FybW=FybW
116 indir ybW=yWbW
117 82 41 sstrdi φy𝒫AFinb𝒫AWFinbW
118 117 adantrr φy𝒫AFinb𝒫AWFinyWbbW
119 df-ss bWbW=b
120 118 119 sylib φy𝒫AFinb𝒫AWFinyWbbW=b
121 120 uneq2d φy𝒫AFinb𝒫AWFinyWbyWbW=yWb
122 simprr φy𝒫AFinb𝒫AWFinyWbyWb
123 ssequn1 yWbyWb=b
124 122 123 sylib φy𝒫AFinb𝒫AWFinyWbyWb=b
125 121 124 eqtrd φy𝒫AFinb𝒫AWFinyWbyWbW=b
126 116 125 eqtrid φy𝒫AFinb𝒫AWFinyWbybW=b
127 126 reseq2d φy𝒫AFinb𝒫AWFinyWbFybW=Fb
128 115 127 eqtrid φy𝒫AFinb𝒫AWFinyWbFybW=Fb
129 118 resabs1d φy𝒫AFinb𝒫AWFinyWbFWb=Fb
130 128 129 eqtr4d φy𝒫AFinb𝒫AWFinyWbFybW=FWb
131 130 oveq2d φy𝒫AFinb𝒫AWFinyWbGFybW=GFWb
132 114 131 eqtr3d φy𝒫AFinb𝒫AWFinyWbGFyb=GFWb
133 132 eleq1d φy𝒫AFinb𝒫AWFinyWbGFybuGFWbu
134 133 biimpd φy𝒫AFinb𝒫AWFinyWbGFybuGFWbu
135 134 expr φy𝒫AFinb𝒫AWFinyWbGFybuGFWbu
136 135 com23 φy𝒫AFinb𝒫AWFinGFybuyWbGFWbu
137 100 136 syld φy𝒫AFinb𝒫AWFinz𝒫AFinyzGFzuyWbGFWbu
138 137 ralrimdva φy𝒫AFinz𝒫AFinyzGFzub𝒫AWFinyWbGFWbu
139 sseq1 a=yWabyWb
140 139 rspceaimv yW𝒫AWFinb𝒫AWFinyWbGFWbua𝒫AWFinb𝒫AWFinabGFWbu
141 78 138 140 syl6an φy𝒫AFinz𝒫AFinyzGFzua𝒫AWFinb𝒫AWFinabGFWbu
142 141 rexlimdva φy𝒫AFinz𝒫AFinyzGFzua𝒫AWFinb𝒫AWFinabGFWbu
143 67 142 impbid φa𝒫AWFinb𝒫AWFinabGFWbuy𝒫AFinz𝒫AFinyzGFzu
144 143 imbi2d φxua𝒫AWFinb𝒫AWFinabGFWbuxuy𝒫AFinz𝒫AFinyzGFzu
145 144 ralbidv φuTopOpenGxua𝒫AWFinb𝒫AWFinabGFWbuuTopOpenGxuy𝒫AFinz𝒫AFinyzGFzu
146 145 anbi2d φxBuTopOpenGxua𝒫AWFinb𝒫AWFinabGFWbuxBuTopOpenGxuy𝒫AFinz𝒫AFinyzGFzu
147 eqid TopOpenG=TopOpenG
148 eqid 𝒫AWFin=𝒫AWFin
149 inex1g AVAWV
150 5 149 syl φAWV
151 fssres F:ABAWAFAW:AWB
152 6 8 151 sylancl φFAW:AWB
153 resres FAW=FAW
154 ffn F:ABFFnA
155 fnresdm FFnAFA=F
156 6 154 155 3syl φFA=F
157 156 reseq1d φFAW=FW
158 153 157 eqtr3id φFAW=FW
159 158 feq1d φFAW:AWBFW:AWB
160 152 159 mpbid φFW:AWB
161 1 147 148 3 4 150 160 eltsms φxGtsumsFWxBuTopOpenGxua𝒫AWFinb𝒫AWFinabGFWbu
162 eqid 𝒫AFin=𝒫AFin
163 1 147 162 3 4 5 6 eltsms φxGtsumsFxBuTopOpenGxuy𝒫AFinz𝒫AFinyzGFzu
164 146 161 163 3bitr4d φxGtsumsFWxGtsumsF
165 164 eqrdv φGtsumsFW=GtsumsF