Metamath Proof Explorer


Theorem txsconnlem

Description: Lemma for txsconn . (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses txsconn.1 φRTop
txsconn.2 φSTop
txsconn.3 φFIICnR×tS
txsconn.5 A=1stR×SF
txsconn.6 B=2ndR×SF
txsconn.7 φGAPHtpyR01×A0
txsconn.8 φHBPHtpyS01×B0
Assertion txsconnlem φFphR×tS01×F0

Proof

Step Hyp Ref Expression
1 txsconn.1 φRTop
2 txsconn.2 φSTop
3 txsconn.3 φFIICnR×tS
4 txsconn.5 A=1stR×SF
5 txsconn.6 B=2ndR×SF
6 txsconn.7 φGAPHtpyR01×A0
7 txsconn.8 φHBPHtpyS01×B0
8 fconstmpt 01×F0=x01F0
9 iitopon IITopOn01
10 9 a1i φIITopOn01
11 eqid R=R
12 11 toptopon RTopRTopOnR
13 1 12 sylib φRTopOnR
14 eqid S=S
15 14 toptopon STopSTopOnS
16 2 15 sylib φSTopOnS
17 txtopon RTopOnRSTopOnSR×tSTopOnR×S
18 13 16 17 syl2anc φR×tSTopOnR×S
19 cnf2 IITopOn01R×tSTopOnR×SFIICnR×tSF:01R×S
20 10 18 3 19 syl3anc φF:01R×S
21 0elunit 001
22 ffvelcdm F:01R×S001F0R×S
23 20 21 22 sylancl φF0R×S
24 10 18 23 cnmptc φx01F0IICnR×tS
25 8 24 eqeltrid φ01×F0IICnR×tS
26 tx1cn RTopOnRSTopOnS1stR×SR×tSCnR
27 13 16 26 syl2anc φ1stR×SR×tSCnR
28 cnco FIICnR×tS1stR×SR×tSCnR1stR×SFIICnR
29 3 27 28 syl2anc φ1stR×SFIICnR
30 4 29 eqeltrid φAIICnR
31 fconstmpt 01×A0=x01A0
32 iiuni 01=II
33 32 11 cnf AIICnRA:01R
34 30 33 syl φA:01R
35 ffvelcdm A:01R001A0R
36 34 21 35 sylancl φA0R
37 10 13 36 cnmptc φx01A0IICnR
38 31 37 eqeltrid φ01×A0IICnR
39 30 38 phtpycn φAPHtpyR01×A0II×tIICnR
40 39 6 sseldd φGII×tIICnR
41 iitop IITop
42 41 41 32 32 txunii 01×01=II×tII
43 42 11 cnf GII×tIICnRG:01×01R
44 ffn G:01×01RGFn01×01
45 40 43 44 3syl φGFn01×01
46 fnov GFn01×01G=x01,y01xGy
47 45 46 sylib φG=x01,y01xGy
48 47 40 eqeltrrd φx01,y01xGyII×tIICnR
49 tx2cn RTopOnRSTopOnS2ndR×SR×tSCnS
50 13 16 49 syl2anc φ2ndR×SR×tSCnS
51 cnco FIICnR×tS2ndR×SR×tSCnS2ndR×SFIICnS
52 3 50 51 syl2anc φ2ndR×SFIICnS
53 5 52 eqeltrid φBIICnS
54 fconstmpt 01×B0=x01B0
55 32 14 cnf BIICnSB:01S
56 53 55 syl φB:01S
57 ffvelcdm B:01S001B0S
58 56 21 57 sylancl φB0S
59 10 16 58 cnmptc φx01B0IICnS
60 54 59 eqeltrid φ01×B0IICnS
61 53 60 phtpycn φBPHtpyS01×B0II×tIICnS
62 61 7 sseldd φHII×tIICnS
63 42 14 cnf HII×tIICnSH:01×01S
64 ffn H:01×01SHFn01×01
65 62 63 64 3syl φHFn01×01
66 fnov HFn01×01H=x01,y01xHy
67 65 66 sylib φH=x01,y01xHy
68 67 62 eqeltrrd φx01,y01xHyII×tIICnS
69 10 10 48 68 cnmpt2t φx01,y01xGyxHyII×tIICnR×tS
70 30 38 phtpyhtpy φAPHtpyR01×A0AIIHtpyR01×A0
71 70 6 sseldd φGAIIHtpyR01×A0
72 10 30 38 71 htpyi φs01sG0=AssG1=01×A0s
73 72 simpld φs01sG0=As
74 4 fveq1i As=1stR×SFs
75 fvco3 F:01R×Ss011stR×SFs=1stR×SFs
76 20 75 sylan φs011stR×SFs=1stR×SFs
77 74 76 eqtrid φs01As=1stR×SFs
78 ffvelcdm F:01R×Ss01FsR×S
79 20 78 sylan φs01FsR×S
80 fvres FsR×S1stR×SFs=1stFs
81 79 80 syl φs011stR×SFs=1stFs
82 73 77 81 3eqtrd φs01sG0=1stFs
83 53 60 phtpyhtpy φBPHtpyS01×B0BIIHtpyS01×B0
84 83 7 sseldd φHBIIHtpyS01×B0
85 10 53 60 84 htpyi φs01sH0=BssH1=01×B0s
86 85 simpld φs01sH0=Bs
87 5 fveq1i Bs=2ndR×SFs
88 fvco3 F:01R×Ss012ndR×SFs=2ndR×SFs
89 20 88 sylan φs012ndR×SFs=2ndR×SFs
90 87 89 eqtrid φs01Bs=2ndR×SFs
91 fvres FsR×S2ndR×SFs=2ndFs
92 79 91 syl φs012ndR×SFs=2ndFs
93 86 90 92 3eqtrd φs01sH0=2ndFs
94 82 93 opeq12d φs01sG0sH0=1stFs2ndFs
95 simpr φs01s01
96 oveq12 x=sy=0xGy=sG0
97 oveq12 x=sy=0xHy=sH0
98 96 97 opeq12d x=sy=0xGyxHy=sG0sH0
99 eqid x01,y01xGyxHy=x01,y01xGyxHy
100 opex sG0sH0V
101 98 99 100 ovmpoa s01001sx01,y01xGyxHy0=sG0sH0
102 95 21 101 sylancl φs01sx01,y01xGyxHy0=sG0sH0
103 1st2nd2 FsR×SFs=1stFs2ndFs
104 79 103 syl φs01Fs=1stFs2ndFs
105 94 102 104 3eqtr4d φs01sx01,y01xGyxHy0=Fs
106 72 simprd φs01sG1=01×A0s
107 fvex A0V
108 107 fvconst2 s0101×A0s=A0
109 108 adantl φs0101×A0s=A0
110 4 fveq1i A0=1stR×SF0
111 fvco3 F:01R×S0011stR×SF0=1stR×SF0
112 20 21 111 sylancl φ1stR×SF0=1stR×SF0
113 fvres F0R×S1stR×SF0=1stF0
114 23 113 syl φ1stR×SF0=1stF0
115 112 114 eqtrd φ1stR×SF0=1stF0
116 110 115 eqtrid φA0=1stF0
117 116 adantr φs01A0=1stF0
118 106 109 117 3eqtrd φs01sG1=1stF0
119 85 simprd φs01sH1=01×B0s
120 fvex B0V
121 120 fvconst2 s0101×B0s=B0
122 121 adantl φs0101×B0s=B0
123 5 fveq1i B0=2ndR×SF0
124 fvco3 F:01R×S0012ndR×SF0=2ndR×SF0
125 20 21 124 sylancl φ2ndR×SF0=2ndR×SF0
126 fvres F0R×S2ndR×SF0=2ndF0
127 23 126 syl φ2ndR×SF0=2ndF0
128 125 127 eqtrd φ2ndR×SF0=2ndF0
129 123 128 eqtrid φB0=2ndF0
130 129 adantr φs01B0=2ndF0
131 119 122 130 3eqtrd φs01sH1=2ndF0
132 118 131 opeq12d φs01sG1sH1=1stF02ndF0
133 1elunit 101
134 oveq12 x=sy=1xGy=sG1
135 oveq12 x=sy=1xHy=sH1
136 134 135 opeq12d x=sy=1xGyxHy=sG1sH1
137 opex sG1sH1V
138 136 99 137 ovmpoa s01101sx01,y01xGyxHy1=sG1sH1
139 95 133 138 sylancl φs01sx01,y01xGyxHy1=sG1sH1
140 fvex F0V
141 140 fvconst2 s0101×F0s=F0
142 141 adantl φs0101×F0s=F0
143 23 adantr φs01F0R×S
144 1st2nd2 F0R×SF0=1stF02ndF0
145 143 144 syl φs01F0=1stF02ndF0
146 142 145 eqtrd φs0101×F0s=1stF02ndF0
147 132 139 146 3eqtr4d φs01sx01,y01xGyxHy1=01×F0s
148 30 38 6 phtpyi φs010Gs=A01Gs=A1
149 148 simpld φs010Gs=A0
150 149 117 eqtrd φs010Gs=1stF0
151 53 60 7 phtpyi φs010Hs=B01Hs=B1
152 151 simpld φs010Hs=B0
153 152 130 eqtrd φs010Hs=2ndF0
154 150 153 opeq12d φs010Gs0Hs=1stF02ndF0
155 oveq12 x=0y=sxGy=0Gs
156 oveq12 x=0y=sxHy=0Hs
157 155 156 opeq12d x=0y=sxGyxHy=0Gs0Hs
158 opex 0Gs0HsV
159 157 99 158 ovmpoa 001s010x01,y01xGyxHys=0Gs0Hs
160 21 95 159 sylancr φs010x01,y01xGyxHys=0Gs0Hs
161 154 160 145 3eqtr4d φs010x01,y01xGyxHys=F0
162 148 simprd φs011Gs=A1
163 4 fveq1i A1=1stR×SF1
164 fvco3 F:01R×S1011stR×SF1=1stR×SF1
165 20 133 164 sylancl φ1stR×SF1=1stR×SF1
166 163 165 eqtrid φA1=1stR×SF1
167 ffvelcdm F:01R×S101F1R×S
168 20 133 167 sylancl φF1R×S
169 fvres F1R×S1stR×SF1=1stF1
170 168 169 syl φ1stR×SF1=1stF1
171 166 170 eqtrd φA1=1stF1
172 171 adantr φs01A1=1stF1
173 162 172 eqtrd φs011Gs=1stF1
174 151 simprd φs011Hs=B1
175 5 fveq1i B1=2ndR×SF1
176 fvco3 F:01R×S1012ndR×SF1=2ndR×SF1
177 20 133 176 sylancl φ2ndR×SF1=2ndR×SF1
178 175 177 eqtrid φB1=2ndR×SF1
179 fvres F1R×S2ndR×SF1=2ndF1
180 168 179 syl φ2ndR×SF1=2ndF1
181 178 180 eqtrd φB1=2ndF1
182 181 adantr φs01B1=2ndF1
183 174 182 eqtrd φs011Hs=2ndF1
184 173 183 opeq12d φs011Gs1Hs=1stF12ndF1
185 oveq12 x=1y=sxGy=1Gs
186 oveq12 x=1y=sxHy=1Hs
187 185 186 opeq12d x=1y=sxGyxHy=1Gs1Hs
188 opex 1Gs1HsV
189 187 99 188 ovmpoa 101s011x01,y01xGyxHys=1Gs1Hs
190 133 95 189 sylancr φs011x01,y01xGyxHys=1Gs1Hs
191 168 adantr φs01F1R×S
192 1st2nd2 F1R×SF1=1stF12ndF1
193 191 192 syl φs01F1=1stF12ndF1
194 184 190 193 3eqtr4d φs011x01,y01xGyxHys=F1
195 3 25 69 105 147 161 194 isphtpy2d φx01,y01xGyxHyFPHtpyR×tS01×F0
196 195 ne0d φFPHtpyR×tS01×F0
197 isphtpc FphR×tS01×F0FIICnR×tS01×F0IICnR×tSFPHtpyR×tS01×F0
198 3 25 196 197 syl3anbrc φFphR×tS01×F0