Metamath Proof Explorer


Theorem txsconnlem

Description: Lemma for txsconn . (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses txsconn.1 φ R Top
txsconn.2 φ S Top
txsconn.3 φ F II Cn R × t S
txsconn.5 A = 1 st R × S F
txsconn.6 B = 2 nd R × S F
txsconn.7 φ G A PHtpy R 0 1 × A 0
txsconn.8 φ H B PHtpy S 0 1 × B 0
Assertion txsconnlem φ F ph R × t S 0 1 × F 0

Proof

Step Hyp Ref Expression
1 txsconn.1 φ R Top
2 txsconn.2 φ S Top
3 txsconn.3 φ F II Cn R × t S
4 txsconn.5 A = 1 st R × S F
5 txsconn.6 B = 2 nd R × S F
6 txsconn.7 φ G A PHtpy R 0 1 × A 0
7 txsconn.8 φ H B PHtpy S 0 1 × B 0
8 fconstmpt 0 1 × F 0 = x 0 1 F 0
9 iitopon II TopOn 0 1
10 9 a1i φ II TopOn 0 1
11 eqid R = R
12 11 toptopon R Top R TopOn R
13 1 12 sylib φ R TopOn R
14 eqid S = S
15 14 toptopon S Top S TopOn S
16 2 15 sylib φ S TopOn S
17 txtopon R TopOn R S TopOn S R × t S TopOn R × S
18 13 16 17 syl2anc φ R × t S TopOn R × S
19 cnf2 II TopOn 0 1 R × t S TopOn R × S F II Cn R × t S F : 0 1 R × S
20 10 18 3 19 syl3anc φ F : 0 1 R × S
21 0elunit 0 0 1
22 ffvelrn F : 0 1 R × S 0 0 1 F 0 R × S
23 20 21 22 sylancl φ F 0 R × S
24 10 18 23 cnmptc φ x 0 1 F 0 II Cn R × t S
25 8 24 eqeltrid φ 0 1 × F 0 II Cn R × t S
26 tx1cn R TopOn R S TopOn S 1 st R × S R × t S Cn R
27 13 16 26 syl2anc φ 1 st R × S R × t S Cn R
28 cnco F II Cn R × t S 1 st R × S R × t S Cn R 1 st R × S F II Cn R
29 3 27 28 syl2anc φ 1 st R × S F II Cn R
30 4 29 eqeltrid φ A II Cn R
31 fconstmpt 0 1 × A 0 = x 0 1 A 0
32 iiuni 0 1 = II
33 32 11 cnf A II Cn R A : 0 1 R
34 30 33 syl φ A : 0 1 R
35 ffvelrn A : 0 1 R 0 0 1 A 0 R
36 34 21 35 sylancl φ A 0 R
37 10 13 36 cnmptc φ x 0 1 A 0 II Cn R
38 31 37 eqeltrid φ 0 1 × A 0 II Cn R
39 30 38 phtpycn φ A PHtpy R 0 1 × A 0 II × t II Cn R
40 39 6 sseldd φ G II × t II Cn R
41 iitop II Top
42 41 41 32 32 txunii 0 1 × 0 1 = II × t II
43 42 11 cnf G II × t II Cn R G : 0 1 × 0 1 R
44 ffn G : 0 1 × 0 1 R G Fn 0 1 × 0 1
45 40 43 44 3syl φ G Fn 0 1 × 0 1
46 fnov G Fn 0 1 × 0 1 G = x 0 1 , y 0 1 x G y
47 45 46 sylib φ G = x 0 1 , y 0 1 x G y
48 47 40 eqeltrrd φ x 0 1 , y 0 1 x G y II × t II Cn R
49 tx2cn R TopOn R S TopOn S 2 nd R × S R × t S Cn S
50 13 16 49 syl2anc φ 2 nd R × S R × t S Cn S
51 cnco F II Cn R × t S 2 nd R × S R × t S Cn S 2 nd R × S F II Cn S
52 3 50 51 syl2anc φ 2 nd R × S F II Cn S
53 5 52 eqeltrid φ B II Cn S
54 fconstmpt 0 1 × B 0 = x 0 1 B 0
55 32 14 cnf B II Cn S B : 0 1 S
56 53 55 syl φ B : 0 1 S
57 ffvelrn B : 0 1 S 0 0 1 B 0 S
58 56 21 57 sylancl φ B 0 S
59 10 16 58 cnmptc φ x 0 1 B 0 II Cn S
60 54 59 eqeltrid φ 0 1 × B 0 II Cn S
61 53 60 phtpycn φ B PHtpy S 0 1 × B 0 II × t II Cn S
62 61 7 sseldd φ H II × t II Cn S
63 42 14 cnf H II × t II Cn S H : 0 1 × 0 1 S
64 ffn H : 0 1 × 0 1 S H Fn 0 1 × 0 1
65 62 63 64 3syl φ H Fn 0 1 × 0 1
66 fnov H Fn 0 1 × 0 1 H = x 0 1 , y 0 1 x H y
67 65 66 sylib φ H = x 0 1 , y 0 1 x H y
68 67 62 eqeltrrd φ x 0 1 , y 0 1 x H y II × t II Cn S
69 10 10 48 68 cnmpt2t φ x 0 1 , y 0 1 x G y x H y II × t II Cn R × t S
70 30 38 phtpyhtpy φ A PHtpy R 0 1 × A 0 A II Htpy R 0 1 × A 0
71 70 6 sseldd φ G A II Htpy R 0 1 × A 0
72 10 30 38 71 htpyi φ s 0 1 s G 0 = A s s G 1 = 0 1 × A 0 s
73 72 simpld φ s 0 1 s G 0 = A s
74 4 fveq1i A s = 1 st R × S F s
75 fvco3 F : 0 1 R × S s 0 1 1 st R × S F s = 1 st R × S F s
76 20 75 sylan φ s 0 1 1 st R × S F s = 1 st R × S F s
77 74 76 syl5eq φ s 0 1 A s = 1 st R × S F s
78 ffvelrn F : 0 1 R × S s 0 1 F s R × S
79 20 78 sylan φ s 0 1 F s R × S
80 fvres F s R × S 1 st R × S F s = 1 st F s
81 79 80 syl φ s 0 1 1 st R × S F s = 1 st F s
82 73 77 81 3eqtrd φ s 0 1 s G 0 = 1 st F s
83 53 60 phtpyhtpy φ B PHtpy S 0 1 × B 0 B II Htpy S 0 1 × B 0
84 83 7 sseldd φ H B II Htpy S 0 1 × B 0
85 10 53 60 84 htpyi φ s 0 1 s H 0 = B s s H 1 = 0 1 × B 0 s
86 85 simpld φ s 0 1 s H 0 = B s
87 5 fveq1i B s = 2 nd R × S F s
88 fvco3 F : 0 1 R × S s 0 1 2 nd R × S F s = 2 nd R × S F s
89 20 88 sylan φ s 0 1 2 nd R × S F s = 2 nd R × S F s
90 87 89 syl5eq φ s 0 1 B s = 2 nd R × S F s
91 fvres F s R × S 2 nd R × S F s = 2 nd F s
92 79 91 syl φ s 0 1 2 nd R × S F s = 2 nd F s
93 86 90 92 3eqtrd φ s 0 1 s H 0 = 2 nd F s
94 82 93 opeq12d φ s 0 1 s G 0 s H 0 = 1 st F s 2 nd F s
95 simpr φ s 0 1 s 0 1
96 oveq12 x = s y = 0 x G y = s G 0
97 oveq12 x = s y = 0 x H y = s H 0
98 96 97 opeq12d x = s y = 0 x G y x H y = s G 0 s H 0
99 eqid x 0 1 , y 0 1 x G y x H y = x 0 1 , y 0 1 x G y x H y
100 opex s G 0 s H 0 V
101 98 99 100 ovmpoa s 0 1 0 0 1 s x 0 1 , y 0 1 x G y x H y 0 = s G 0 s H 0
102 95 21 101 sylancl φ s 0 1 s x 0 1 , y 0 1 x G y x H y 0 = s G 0 s H 0
103 1st2nd2 F s R × S F s = 1 st F s 2 nd F s
104 79 103 syl φ s 0 1 F s = 1 st F s 2 nd F s
105 94 102 104 3eqtr4d φ s 0 1 s x 0 1 , y 0 1 x G y x H y 0 = F s
106 72 simprd φ s 0 1 s G 1 = 0 1 × A 0 s
107 fvex A 0 V
108 107 fvconst2 s 0 1 0 1 × A 0 s = A 0
109 108 adantl φ s 0 1 0 1 × A 0 s = A 0
110 4 fveq1i A 0 = 1 st R × S F 0
111 fvco3 F : 0 1 R × S 0 0 1 1 st R × S F 0 = 1 st R × S F 0
112 20 21 111 sylancl φ 1 st R × S F 0 = 1 st R × S F 0
113 fvres F 0 R × S 1 st R × S F 0 = 1 st F 0
114 23 113 syl φ 1 st R × S F 0 = 1 st F 0
115 112 114 eqtrd φ 1 st R × S F 0 = 1 st F 0
116 110 115 syl5eq φ A 0 = 1 st F 0
117 116 adantr φ s 0 1 A 0 = 1 st F 0
118 106 109 117 3eqtrd φ s 0 1 s G 1 = 1 st F 0
119 85 simprd φ s 0 1 s H 1 = 0 1 × B 0 s
120 fvex B 0 V
121 120 fvconst2 s 0 1 0 1 × B 0 s = B 0
122 121 adantl φ s 0 1 0 1 × B 0 s = B 0
123 5 fveq1i B 0 = 2 nd R × S F 0
124 fvco3 F : 0 1 R × S 0 0 1 2 nd R × S F 0 = 2 nd R × S F 0
125 20 21 124 sylancl φ 2 nd R × S F 0 = 2 nd R × S F 0
126 fvres F 0 R × S 2 nd R × S F 0 = 2 nd F 0
127 23 126 syl φ 2 nd R × S F 0 = 2 nd F 0
128 125 127 eqtrd φ 2 nd R × S F 0 = 2 nd F 0
129 123 128 syl5eq φ B 0 = 2 nd F 0
130 129 adantr φ s 0 1 B 0 = 2 nd F 0
131 119 122 130 3eqtrd φ s 0 1 s H 1 = 2 nd F 0
132 118 131 opeq12d φ s 0 1 s G 1 s H 1 = 1 st F 0 2 nd F 0
133 1elunit 1 0 1
134 oveq12 x = s y = 1 x G y = s G 1
135 oveq12 x = s y = 1 x H y = s H 1
136 134 135 opeq12d x = s y = 1 x G y x H y = s G 1 s H 1
137 opex s G 1 s H 1 V
138 136 99 137 ovmpoa s 0 1 1 0 1 s x 0 1 , y 0 1 x G y x H y 1 = s G 1 s H 1
139 95 133 138 sylancl φ s 0 1 s x 0 1 , y 0 1 x G y x H y 1 = s G 1 s H 1
140 fvex F 0 V
141 140 fvconst2 s 0 1 0 1 × F 0 s = F 0
142 141 adantl φ s 0 1 0 1 × F 0 s = F 0
143 23 adantr φ s 0 1 F 0 R × S
144 1st2nd2 F 0 R × S F 0 = 1 st F 0 2 nd F 0
145 143 144 syl φ s 0 1 F 0 = 1 st F 0 2 nd F 0
146 142 145 eqtrd φ s 0 1 0 1 × F 0 s = 1 st F 0 2 nd F 0
147 132 139 146 3eqtr4d φ s 0 1 s x 0 1 , y 0 1 x G y x H y 1 = 0 1 × F 0 s
148 30 38 6 phtpyi φ s 0 1 0 G s = A 0 1 G s = A 1
149 148 simpld φ s 0 1 0 G s = A 0
150 149 117 eqtrd φ s 0 1 0 G s = 1 st F 0
151 53 60 7 phtpyi φ s 0 1 0 H s = B 0 1 H s = B 1
152 151 simpld φ s 0 1 0 H s = B 0
153 152 130 eqtrd φ s 0 1 0 H s = 2 nd F 0
154 150 153 opeq12d φ s 0 1 0 G s 0 H s = 1 st F 0 2 nd F 0
155 oveq12 x = 0 y = s x G y = 0 G s
156 oveq12 x = 0 y = s x H y = 0 H s
157 155 156 opeq12d x = 0 y = s x G y x H y = 0 G s 0 H s
158 opex 0 G s 0 H s V
159 157 99 158 ovmpoa 0 0 1 s 0 1 0 x 0 1 , y 0 1 x G y x H y s = 0 G s 0 H s
160 21 95 159 sylancr φ s 0 1 0 x 0 1 , y 0 1 x G y x H y s = 0 G s 0 H s
161 154 160 145 3eqtr4d φ s 0 1 0 x 0 1 , y 0 1 x G y x H y s = F 0
162 148 simprd φ s 0 1 1 G s = A 1
163 4 fveq1i A 1 = 1 st R × S F 1
164 fvco3 F : 0 1 R × S 1 0 1 1 st R × S F 1 = 1 st R × S F 1
165 20 133 164 sylancl φ 1 st R × S F 1 = 1 st R × S F 1
166 163 165 syl5eq φ A 1 = 1 st R × S F 1
167 ffvelrn F : 0 1 R × S 1 0 1 F 1 R × S
168 20 133 167 sylancl φ F 1 R × S
169 fvres F 1 R × S 1 st R × S F 1 = 1 st F 1
170 168 169 syl φ 1 st R × S F 1 = 1 st F 1
171 166 170 eqtrd φ A 1 = 1 st F 1
172 171 adantr φ s 0 1 A 1 = 1 st F 1
173 162 172 eqtrd φ s 0 1 1 G s = 1 st F 1
174 151 simprd φ s 0 1 1 H s = B 1
175 5 fveq1i B 1 = 2 nd R × S F 1
176 fvco3 F : 0 1 R × S 1 0 1 2 nd R × S F 1 = 2 nd R × S F 1
177 20 133 176 sylancl φ 2 nd R × S F 1 = 2 nd R × S F 1
178 175 177 syl5eq φ B 1 = 2 nd R × S F 1
179 fvres F 1 R × S 2 nd R × S F 1 = 2 nd F 1
180 168 179 syl φ 2 nd R × S F 1 = 2 nd F 1
181 178 180 eqtrd φ B 1 = 2 nd F 1
182 181 adantr φ s 0 1 B 1 = 2 nd F 1
183 174 182 eqtrd φ s 0 1 1 H s = 2 nd F 1
184 173 183 opeq12d φ s 0 1 1 G s 1 H s = 1 st F 1 2 nd F 1
185 oveq12 x = 1 y = s x G y = 1 G s
186 oveq12 x = 1 y = s x H y = 1 H s
187 185 186 opeq12d x = 1 y = s x G y x H y = 1 G s 1 H s
188 opex 1 G s 1 H s V
189 187 99 188 ovmpoa 1 0 1 s 0 1 1 x 0 1 , y 0 1 x G y x H y s = 1 G s 1 H s
190 133 95 189 sylancr φ s 0 1 1 x 0 1 , y 0 1 x G y x H y s = 1 G s 1 H s
191 168 adantr φ s 0 1 F 1 R × S
192 1st2nd2 F 1 R × S F 1 = 1 st F 1 2 nd F 1
193 191 192 syl φ s 0 1 F 1 = 1 st F 1 2 nd F 1
194 184 190 193 3eqtr4d φ s 0 1 1 x 0 1 , y 0 1 x G y x H y s = F 1
195 3 25 69 105 147 161 194 isphtpy2d φ x 0 1 , y 0 1 x G y x H y F PHtpy R × t S 0 1 × F 0
196 195 ne0d φ F PHtpy R × t S 0 1 × F 0
197 isphtpc F ph R × t S 0 1 × F 0 F II Cn R × t S 0 1 × F 0 II Cn R × t S F PHtpy R × t S 0 1 × F 0
198 3 25 196 197 syl3anbrc φ F ph R × t S 0 1 × F 0