Metamath Proof Explorer


Theorem vonicc

Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicc.x φXFin
vonicc.a φA:X
vonicc.b φB:X
vonicc.i I=kXAkBk
vonicc.l L=xFinax,bxifx=0kxvolakbk
Assertion vonicc φvolnXI=ALXB

Proof

Step Hyp Ref Expression
1 vonicc.x φXFin
2 vonicc.a φA:X
3 vonicc.b φB:X
4 vonicc.i I=kXAkBk
5 vonicc.l L=xFinax,bxifx=0kxvolakbk
6 2 adantr φX=A:X
7 feq2 X=A:XA:
8 7 adantl φX=A:XA:
9 6 8 mpbid φX=A:
10 3 adantr φX=B:X
11 feq2 X=B:XB:
12 11 adantl φX=B:XB:
13 10 12 mpbid φX=B:
14 5 9 13 hoidmv0val φX=ALB=0
15 14 eqcomd φX=0=ALB
16 fveq2 X=volnX=voln
17 4 a1i X=I=kXAkBk
18 ixpeq1 X=kXAkBk=kAkBk
19 17 18 eqtrd X=I=kAkBk
20 16 19 fveq12d X=volnXI=volnkAkBk
21 20 adantl φX=volnXI=volnkAkBk
22 0fin Fin
23 22 a1i φX=Fin
24 eqid domvoln=domvoln
25 23 24 9 13 iccvonmbl φX=kAkBkdomvoln
26 25 von0val φX=volnkAkBk=0
27 21 26 eqtrd φX=volnXI=0
28 fveq2 X=LX=L
29 28 oveqd X=ALXB=ALB
30 29 adantl φX=ALXB=ALB
31 15 27 30 3eqtr4d φX=volnXI=ALXB
32 neqne ¬X=X
33 32 adantl φ¬X=X
34 nfv kφX
35 nfra1 kkXAkBk
36 34 35 nfan kφXkXAkBk
37 2 ffvelcdmda φkXAk
38 3 ffvelcdmda φkXBk
39 volico2 AkBkvolAkBk=ifAkBkBkAk0
40 37 38 39 syl2anc φkXvolAkBk=ifAkBkBkAk0
41 40 ad4ant14 φXkXAkBkkXvolAkBk=ifAkBkBkAk0
42 rspa kXAkBkkXAkBk
43 42 iftrued kXAkBkkXifAkBkBkAk0=BkAk
44 43 adantll φXkXAkBkkXifAkBkBkAk0=BkAk
45 41 44 eqtrd φXkXAkBkkXvolAkBk=BkAk
46 45 ex φXkXAkBkkXvolAkBk=BkAk
47 36 46 ralrimi φXkXAkBkkXvolAkBk=BkAk
48 47 prodeq2d φXkXAkBkkXvolAkBk=kXBkAk
49 48 eqcomd φXkXAkBkkXBkAk=kXvolAkBk
50 fveq2 k=jAk=Aj
51 fveq2 k=jBk=Bj
52 50 51 breq12d k=jAkBkAjBj
53 52 cbvralvw kXAkBkjXAjBj
54 53 biimpi kXAkBkjXAjBj
55 54 adantl φXkXAkBkjXAjBj
56 1 adantr φXXFin
57 56 adantr φXjXAjBjXFin
58 2 adantr φXA:X
59 58 adantr φXjXAjBjA:X
60 3 adantr φXB:X
61 60 adantr φXjXAjBjB:X
62 simpr φXX
63 62 adantr φXjXAjBjX
64 53 42 sylanbr jXAjBjkXAkBk
65 64 adantll φXjXAjBjkXAkBk
66 fveq2 j=kBj=Bk
67 66 oveq1d j=kBj+1m=Bk+1m
68 67 cbvmptv jXBj+1m=kXBk+1m
69 68 mpteq2i mjXBj+1m=mkXBk+1m
70 oveq2 m=n1m=1n
71 70 oveq2d m=nBk+1m=Bk+1n
72 71 mpteq2dv m=nkXBk+1m=kXBk+1n
73 72 cbvmptv mkXBk+1m=nkXBk+1n
74 69 73 eqtri mjXBj+1m=nkXBk+1n
75 fveq2 i=nmjXBj+1mi=mjXBj+1mn
76 75 fveq1d i=nmjXBj+1mik=mjXBj+1mnk
77 76 oveq2d i=nAkmjXBj+1mik=AkmjXBj+1mnk
78 77 ixpeq2dv i=nkXAkmjXBj+1mik=kXAkmjXBj+1mnk
79 78 cbvmptv ikXAkmjXBj+1mik=nkXAkmjXBj+1mnk
80 57 59 61 63 65 4 74 79 vonicclem2 φXjXAjBjvolnXI=kXBkAk
81 55 80 syldan φXkXAkBkvolnXI=kXBkAk
82 5 56 62 58 60 hoidmvn0val φXALXB=kXvolAkBk
83 82 adantr φXkXAkBkALXB=kXvolAkBk
84 49 81 83 3eqtr4d φXkXAkBkvolnXI=ALXB
85 rexnal kX¬AkBk¬kXAkBk
86 85 bicomi ¬kXAkBkkX¬AkBk
87 86 biimpi ¬kXAkBkkX¬AkBk
88 87 adantl φ¬kXAkBkkX¬AkBk
89 simpr φkX¬AkBk¬AkBk
90 38 adantr φkX¬AkBkBk
91 37 adantr φkX¬AkBkAk
92 90 91 ltnled φkX¬AkBkBk<Ak¬AkBk
93 89 92 mpbird φkX¬AkBkBk<Ak
94 93 ex φkX¬AkBkBk<Ak
95 94 reximdva φkX¬AkBkkXBk<Ak
96 95 adantr φ¬kXAkBkkX¬AkBkkXBk<Ak
97 88 96 mpd φ¬kXAkBkkXBk<Ak
98 97 adantlr φX¬kXAkBkkXBk<Ak
99 nfcv _kvolnX
100 nfixp1 _kkXAkBk
101 4 100 nfcxfr _kI
102 99 101 nffv _kvolnXI
103 nfcv _kA
104 nfcv _kFin
105 nfcv _kx
106 nfv kx=
107 nfcv _k0
108 nfcv _kx
109 108 nfcprod1 _kkxvolakbk
110 106 107 109 nfif _kifx=0kxvolakbk
111 105 105 110 nfmpo _kax,bxifx=0kxvolakbk
112 104 111 nfmpt _kxFinax,bxifx=0kxvolakbk
113 5 112 nfcxfr _kL
114 nfcv _kX
115 113 114 nffv _kLX
116 nfcv _kB
117 103 115 116 nfov _kALXB
118 102 117 nfeq kvolnXI=ALXB
119 1 vonmea φvolnXMeas
120 119 mea0 φvolnX=0
121 120 3ad2ant1 φkXBk<AkvolnX=0
122 4 a1i φkXBk<AkI=kXAkBk
123 simp2 φkXBk<AkkX
124 simp3 φkXBk<AkBk<Ak
125 ressxr *
126 125 37 sselid φkXAk*
127 125 38 sselid φkXBk*
128 icc0 Ak*Bk*AkBk=Bk<Ak
129 126 127 128 syl2anc φkXAkBk=Bk<Ak
130 129 3adant3 φkXBk<AkAkBk=Bk<Ak
131 124 130 mpbird φkXBk<AkAkBk=
132 rspe kXAkBk=kXAkBk=
133 123 131 132 syl2anc φkXBk<AkkXAkBk=
134 ixp0 kXAkBk=kXAkBk=
135 133 134 syl φkXBk<AkkXAkBk=
136 122 135 eqtrd φkXBk<AkI=
137 136 fveq2d φkXBk<AkvolnXI=volnX
138 ne0i kXX
139 138 adantl φkXX
140 139 82 syldan φkXALXB=kXvolAkBk
141 140 3adant3 φkXBk<AkALXB=kXvolAkBk
142 eleq1w j=kjXkX
143 fveq2 j=kAj=Ak
144 66 143 breq12d j=kBj<AjBk<Ak
145 142 144 3anbi23d j=kφjXBj<AjφkXBk<Ak
146 145 imbi1d j=kφjXBj<AjkXvolAkBk=0φkXBk<AkkXvolAkBk=0
147 nfv kφjXBj<Aj
148 1 3ad2ant1 φjXBj<AjXFin
149 volicore AkBkvolAkBk
150 37 38 149 syl2anc φkXvolAkBk
151 150 recnd φkXvolAkBk
152 151 3ad2antl1 φjXBj<AjkXvolAkBk
153 simp2 φjXBj<AjjX
154 50 51 oveq12d k=jAkBk=AjBj
155 154 fveq2d k=jvolAkBk=volAjBj
156 155 adantl φjXBj<Ajk=jvolAkBk=volAjBj
157 2 ffvelcdmda φjXAj
158 3 ffvelcdmda φjXBj
159 volico2 AjBjvolAjBj=ifAjBjBjAj0
160 157 158 159 syl2anc φjXvolAjBj=ifAjBjBjAj0
161 160 3adant3 φjXBj<AjvolAjBj=ifAjBjBjAj0
162 simp3 φjXBj<AjBj<Aj
163 158 157 ltnled φjXBj<Aj¬AjBj
164 163 3adant3 φjXBj<AjBj<Aj¬AjBj
165 162 164 mpbid φjXBj<Aj¬AjBj
166 165 iffalsed φjXBj<AjifAjBjBjAj0=0
167 161 166 eqtrd φjXBj<AjvolAjBj=0
168 167 adantr φjXBj<Ajk=jvolAjBj=0
169 156 168 eqtrd φjXBj<Ajk=jvolAkBk=0
170 147 148 152 153 169 fprodeq0g φjXBj<AjkXvolAkBk=0
171 146 170 chvarvv φkXBk<AkkXvolAkBk=0
172 141 171 eqtrd φkXBk<AkALXB=0
173 121 137 172 3eqtr4d φkXBk<AkvolnXI=ALXB
174 173 3exp φkXBk<AkvolnXI=ALXB
175 174 adantr φXkXBk<AkvolnXI=ALXB
176 34 118 175 rexlimd φXkXBk<AkvolnXI=ALXB
177 176 imp φXkXBk<AkvolnXI=ALXB
178 98 177 syldan φX¬kXAkBkvolnXI=ALXB
179 84 178 pm2.61dan φXvolnXI=ALXB
180 33 179 syldan φ¬X=volnXI=ALXB
181 31 180 pm2.61dan φvolnXI=ALXB