Metamath Proof Explorer


Theorem vonicc

Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonicc.x φ X Fin
vonicc.a φ A : X
vonicc.b φ B : X
vonicc.i I = k X A k B k
vonicc.l L = x Fin a x , b x if x = 0 k x vol a k b k
Assertion vonicc φ voln X I = A L X B

Proof

Step Hyp Ref Expression
1 vonicc.x φ X Fin
2 vonicc.a φ A : X
3 vonicc.b φ B : X
4 vonicc.i I = k X A k B k
5 vonicc.l L = x Fin a x , b x if x = 0 k x vol a k b k
6 2 adantr φ X = A : X
7 feq2 X = A : X A :
8 7 adantl φ X = A : X A :
9 6 8 mpbid φ X = A :
10 3 adantr φ X = B : X
11 feq2 X = B : X B :
12 11 adantl φ X = B : X B :
13 10 12 mpbid φ X = B :
14 5 9 13 hoidmv0val φ X = A L B = 0
15 14 eqcomd φ X = 0 = A L B
16 fveq2 X = voln X = voln
17 4 a1i X = I = k X A k B k
18 ixpeq1 X = k X A k B k = k A k B k
19 17 18 eqtrd X = I = k A k B k
20 16 19 fveq12d X = voln X I = voln k A k B k
21 20 adantl φ X = voln X I = voln k A k B k
22 0fin Fin
23 22 a1i φ X = Fin
24 eqid dom voln = dom voln
25 23 24 9 13 iccvonmbl φ X = k A k B k dom voln
26 25 von0val φ X = voln k A k B k = 0
27 21 26 eqtrd φ X = voln X I = 0
28 fveq2 X = L X = L
29 28 oveqd X = A L X B = A L B
30 29 adantl φ X = A L X B = A L B
31 15 27 30 3eqtr4d φ X = voln X I = A L X B
32 neqne ¬ X = X
33 32 adantl φ ¬ X = X
34 nfv k φ X
35 nfra1 k k X A k B k
36 34 35 nfan k φ X k X A k B k
37 2 ffvelrnda φ k X A k
38 3 ffvelrnda φ k X B k
39 volico2 A k B k vol A k B k = if A k B k B k A k 0
40 37 38 39 syl2anc φ k X vol A k B k = if A k B k B k A k 0
41 40 ad4ant14 φ X k X A k B k k X vol A k B k = if A k B k B k A k 0
42 rspa k X A k B k k X A k B k
43 42 iftrued k X A k B k k X if A k B k B k A k 0 = B k A k
44 43 adantll φ X k X A k B k k X if A k B k B k A k 0 = B k A k
45 41 44 eqtrd φ X k X A k B k k X vol A k B k = B k A k
46 45 ex φ X k X A k B k k X vol A k B k = B k A k
47 36 46 ralrimi φ X k X A k B k k X vol A k B k = B k A k
48 47 prodeq2d φ X k X A k B k k X vol A k B k = k X B k A k
49 48 eqcomd φ X k X A k B k k X B k A k = k X vol A k B k
50 fveq2 k = j A k = A j
51 fveq2 k = j B k = B j
52 50 51 breq12d k = j A k B k A j B j
53 52 cbvralvw k X A k B k j X A j B j
54 53 biimpi k X A k B k j X A j B j
55 54 adantl φ X k X A k B k j X A j B j
56 1 adantr φ X X Fin
57 56 adantr φ X j X A j B j X Fin
58 2 adantr φ X A : X
59 58 adantr φ X j X A j B j A : X
60 3 adantr φ X B : X
61 60 adantr φ X j X A j B j B : X
62 simpr φ X X
63 62 adantr φ X j X A j B j X
64 53 42 sylanbr j X A j B j k X A k B k
65 64 adantll φ X j X A j B j k X A k B k
66 fveq2 j = k B j = B k
67 66 oveq1d j = k B j + 1 m = B k + 1 m
68 67 cbvmptv j X B j + 1 m = k X B k + 1 m
69 68 mpteq2i m j X B j + 1 m = m k X B k + 1 m
70 oveq2 m = n 1 m = 1 n
71 70 oveq2d m = n B k + 1 m = B k + 1 n
72 71 mpteq2dv m = n k X B k + 1 m = k X B k + 1 n
73 72 cbvmptv m k X B k + 1 m = n k X B k + 1 n
74 69 73 eqtri m j X B j + 1 m = n k X B k + 1 n
75 fveq2 i = n m j X B j + 1 m i = m j X B j + 1 m n
76 75 fveq1d i = n m j X B j + 1 m i k = m j X B j + 1 m n k
77 76 oveq2d i = n A k m j X B j + 1 m i k = A k m j X B j + 1 m n k
78 77 ixpeq2dv i = n k X A k m j X B j + 1 m i k = k X A k m j X B j + 1 m n k
79 78 cbvmptv i k X A k m j X B j + 1 m i k = n k X A k m j X B j + 1 m n k
80 57 59 61 63 65 4 74 79 vonicclem2 φ X j X A j B j voln X I = k X B k A k
81 55 80 syldan φ X k X A k B k voln X I = k X B k A k
82 5 56 62 58 60 hoidmvn0val φ X A L X B = k X vol A k B k
83 82 adantr φ X k X A k B k A L X B = k X vol A k B k
84 49 81 83 3eqtr4d φ X k X A k B k voln X I = A L X B
85 rexnal k X ¬ A k B k ¬ k X A k B k
86 85 bicomi ¬ k X A k B k k X ¬ A k B k
87 86 biimpi ¬ k X A k B k k X ¬ A k B k
88 87 adantl φ ¬ k X A k B k k X ¬ A k B k
89 simpr φ k X ¬ A k B k ¬ A k B k
90 38 adantr φ k X ¬ A k B k B k
91 37 adantr φ k X ¬ A k B k A k
92 90 91 ltnled φ k X ¬ A k B k B k < A k ¬ A k B k
93 89 92 mpbird φ k X ¬ A k B k B k < A k
94 93 ex φ k X ¬ A k B k B k < A k
95 94 reximdva φ k X ¬ A k B k k X B k < A k
96 95 adantr φ ¬ k X A k B k k X ¬ A k B k k X B k < A k
97 88 96 mpd φ ¬ k X A k B k k X B k < A k
98 97 adantlr φ X ¬ k X A k B k k X B k < A k
99 nfcv _ k voln X
100 nfixp1 _ k k X A k B k
101 4 100 nfcxfr _ k I
102 99 101 nffv _ k voln X I
103 nfcv _ k A
104 nfcv _ k Fin
105 nfcv _ k x
106 nfv k x =
107 nfcv _ k 0
108 nfcv _ k x
109 108 nfcprod1 _ k k x vol a k b k
110 106 107 109 nfif _ k if x = 0 k x vol a k b k
111 105 105 110 nfmpo _ k a x , b x if x = 0 k x vol a k b k
112 104 111 nfmpt _ k x Fin a x , b x if x = 0 k x vol a k b k
113 5 112 nfcxfr _ k L
114 nfcv _ k X
115 113 114 nffv _ k L X
116 nfcv _ k B
117 103 115 116 nfov _ k A L X B
118 102 117 nfeq k voln X I = A L X B
119 1 vonmea φ voln X Meas
120 119 mea0 φ voln X = 0
121 120 3ad2ant1 φ k X B k < A k voln X = 0
122 4 a1i φ k X B k < A k I = k X A k B k
123 simp2 φ k X B k < A k k X
124 simp3 φ k X B k < A k B k < A k
125 ressxr *
126 125 37 sselid φ k X A k *
127 125 38 sselid φ k X B k *
128 icc0 A k * B k * A k B k = B k < A k
129 126 127 128 syl2anc φ k X A k B k = B k < A k
130 129 3adant3 φ k X B k < A k A k B k = B k < A k
131 124 130 mpbird φ k X B k < A k A k B k =
132 rspe k X A k B k = k X A k B k =
133 123 131 132 syl2anc φ k X B k < A k k X A k B k =
134 ixp0 k X A k B k = k X A k B k =
135 133 134 syl φ k X B k < A k k X A k B k =
136 122 135 eqtrd φ k X B k < A k I =
137 136 fveq2d φ k X B k < A k voln X I = voln X
138 ne0i k X X
139 138 adantl φ k X X
140 139 82 syldan φ k X A L X B = k X vol A k B k
141 140 3adant3 φ k X B k < A k A L X B = k X vol A k B k
142 eleq1w j = k j X k X
143 fveq2 j = k A j = A k
144 66 143 breq12d j = k B j < A j B k < A k
145 142 144 3anbi23d j = k φ j X B j < A j φ k X B k < A k
146 145 imbi1d j = k φ j X B j < A j k X vol A k B k = 0 φ k X B k < A k k X vol A k B k = 0
147 nfv k φ j X B j < A j
148 1 3ad2ant1 φ j X B j < A j X Fin
149 volicore A k B k vol A k B k
150 37 38 149 syl2anc φ k X vol A k B k
151 150 recnd φ k X vol A k B k
152 151 3ad2antl1 φ j X B j < A j k X vol A k B k
153 simp2 φ j X B j < A j j X
154 50 51 oveq12d k = j A k B k = A j B j
155 154 fveq2d k = j vol A k B k = vol A j B j
156 155 adantl φ j X B j < A j k = j vol A k B k = vol A j B j
157 2 ffvelrnda φ j X A j
158 3 ffvelrnda φ j X B j
159 volico2 A j B j vol A j B j = if A j B j B j A j 0
160 157 158 159 syl2anc φ j X vol A j B j = if A j B j B j A j 0
161 160 3adant3 φ j X B j < A j vol A j B j = if A j B j B j A j 0
162 simp3 φ j X B j < A j B j < A j
163 158 157 ltnled φ j X B j < A j ¬ A j B j
164 163 3adant3 φ j X B j < A j B j < A j ¬ A j B j
165 162 164 mpbid φ j X B j < A j ¬ A j B j
166 165 iffalsed φ j X B j < A j if A j B j B j A j 0 = 0
167 161 166 eqtrd φ j X B j < A j vol A j B j = 0
168 167 adantr φ j X B j < A j k = j vol A j B j = 0
169 156 168 eqtrd φ j X B j < A j k = j vol A k B k = 0
170 147 148 152 153 169 fprodeq0g φ j X B j < A j k X vol A k B k = 0
171 146 170 chvarvv φ k X B k < A k k X vol A k B k = 0
172 141 171 eqtrd φ k X B k < A k A L X B = 0
173 121 137 172 3eqtr4d φ k X B k < A k voln X I = A L X B
174 173 3exp φ k X B k < A k voln X I = A L X B
175 174 adantr φ X k X B k < A k voln X I = A L X B
176 34 118 175 rexlimd φ X k X B k < A k voln X I = A L X B
177 176 imp φ X k X B k < A k voln X I = A L X B
178 98 177 syldan φ X ¬ k X A k B k voln X I = A L X B
179 84 178 pm2.61dan φ X voln X I = A L X B
180 33 179 syldan φ ¬ X = voln X I = A L X B
181 31 180 pm2.61dan φ voln X I = A L X B