Metamath Proof Explorer


Theorem xkohaus

Description: If the codomain space is Hausdorff, then the compact-open topology of continuous functions is also Hausdorff. (Contributed by Mario Carneiro, 19-Mar-2015)

Ref Expression
Assertion xkohaus R Top S Haus S ^ ko R Haus

Proof

Step Hyp Ref Expression
1 haustop S Haus S Top
2 xkotop R Top S Top S ^ ko R Top
3 1 2 sylan2 R Top S Haus S ^ ko R Top
4 eqid S ^ ko R = S ^ ko R
5 4 xkouni R Top S Top R Cn S = S ^ ko R
6 1 5 sylan2 R Top S Haus R Cn S = S ^ ko R
7 6 eleq2d R Top S Haus f R Cn S f S ^ ko R
8 6 eleq2d R Top S Haus g R Cn S g S ^ ko R
9 7 8 anbi12d R Top S Haus f R Cn S g R Cn S f S ^ ko R g S ^ ko R
10 simprl R Top S Haus f R Cn S g R Cn S f R Cn S
11 eqid R = R
12 eqid S = S
13 11 12 cnf f R Cn S f : R S
14 10 13 syl R Top S Haus f R Cn S g R Cn S f : R S
15 14 ffnd R Top S Haus f R Cn S g R Cn S f Fn R
16 simprr R Top S Haus f R Cn S g R Cn S g R Cn S
17 11 12 cnf g R Cn S g : R S
18 16 17 syl R Top S Haus f R Cn S g R Cn S g : R S
19 18 ffnd R Top S Haus f R Cn S g R Cn S g Fn R
20 eqfnfv f Fn R g Fn R f = g x R f x = g x
21 15 19 20 syl2anc R Top S Haus f R Cn S g R Cn S f = g x R f x = g x
22 21 necon3abid R Top S Haus f R Cn S g R Cn S f g ¬ x R f x = g x
23 rexnal x R ¬ f x = g x ¬ x R f x = g x
24 df-ne f x g x ¬ f x = g x
25 simpllr R Top S Haus f R Cn S g R Cn S x R f x g x S Haus
26 14 adantr R Top S Haus f R Cn S g R Cn S x R f x g x f : R S
27 simprl R Top S Haus f R Cn S g R Cn S x R f x g x x R
28 26 27 ffvelrnd R Top S Haus f R Cn S g R Cn S x R f x g x f x S
29 18 adantr R Top S Haus f R Cn S g R Cn S x R f x g x g : R S
30 29 27 ffvelrnd R Top S Haus f R Cn S g R Cn S x R f x g x g x S
31 simprr R Top S Haus f R Cn S g R Cn S x R f x g x f x g x
32 12 hausnei S Haus f x S g x S f x g x a S b S f x a g x b a b =
33 25 28 30 31 32 syl13anc R Top S Haus f R Cn S g R Cn S x R f x g x a S b S f x a g x b a b =
34 33 expr R Top S Haus f R Cn S g R Cn S x R f x g x a S b S f x a g x b a b =
35 24 34 syl5bir R Top S Haus f R Cn S g R Cn S x R ¬ f x = g x a S b S f x a g x b a b =
36 simp-4l R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = R Top
37 1 ad4antlr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = S Top
38 simplr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = x R
39 38 snssd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = x R
40 toptopon2 R Top R TopOn R
41 36 40 sylib R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = R TopOn R
42 restsn2 R TopOn R x R R 𝑡 x = 𝒫 x
43 41 38 42 syl2anc R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = R 𝑡 x = 𝒫 x
44 snfi x Fin
45 discmp x Fin 𝒫 x Comp
46 44 45 mpbi 𝒫 x Comp
47 43 46 eqeltrdi R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = R 𝑡 x Comp
48 simprll R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = a S
49 11 36 37 39 47 48 xkoopn R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S | h x a S ^ ko R
50 simprlr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = b S
51 11 36 37 39 47 50 xkoopn R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S | h x b S ^ ko R
52 imaeq1 h = f h x = f x
53 52 sseq1d h = f h x a f x a
54 10 ad2antrr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f R Cn S
55 15 ad2antrr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f Fn R
56 fnsnfv f Fn R x R f x = f x
57 55 38 56 syl2anc R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f x = f x
58 simprr1 R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f x a
59 58 snssd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f x a
60 57 59 eqsstrrd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f x a
61 53 54 60 elrabd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = f h R Cn S | h x a
62 imaeq1 h = g h x = g x
63 62 sseq1d h = g h x b g x b
64 16 ad2antrr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g R Cn S
65 19 ad2antrr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g Fn R
66 fnsnfv g Fn R x R g x = g x
67 65 38 66 syl2anc R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g x = g x
68 simprr2 R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g x b
69 68 snssd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g x b
70 67 69 eqsstrrd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g x b
71 63 64 70 elrabd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = g h R Cn S | h x b
72 inrab h R Cn S | h x a h R Cn S | h x b = h R Cn S | h x a h x b
73 simpllr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S x R
74 11 12 cnf h R Cn S h : R S
75 74 fdmd h R Cn S dom h = R
76 75 adantl R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S dom h = R
77 73 76 eleqtrrd R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S x dom h
78 simprr3 R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = a b =
79 78 adantr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S a b =
80 sseq0 h x a b a b = h x =
81 80 expcom a b = h x a b h x =
82 79 81 syl R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S h x a b h x =
83 imadisj h x = dom h x =
84 disjsn dom h x = ¬ x dom h
85 83 84 bitri h x = ¬ x dom h
86 82 85 syl6ib R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S h x a b ¬ x dom h
87 77 86 mt2d R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S ¬ h x a b
88 ssin h x a h x b h x a b
89 87 88 sylnibr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S ¬ h x a h x b
90 89 ralrimiva R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S ¬ h x a h x b
91 rabeq0 h R Cn S | h x a h x b = h R Cn S ¬ h x a h x b
92 90 91 sylibr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S | h x a h x b =
93 72 92 eqtrid R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = h R Cn S | h x a h R Cn S | h x b =
94 eleq2 u = h R Cn S | h x a f u f h R Cn S | h x a
95 ineq1 u = h R Cn S | h x a u v = h R Cn S | h x a v
96 95 eqeq1d u = h R Cn S | h x a u v = h R Cn S | h x a v =
97 94 96 3anbi13d u = h R Cn S | h x a f u g v u v = f h R Cn S | h x a g v h R Cn S | h x a v =
98 eleq2 v = h R Cn S | h x b g v g h R Cn S | h x b
99 ineq2 v = h R Cn S | h x b h R Cn S | h x a v = h R Cn S | h x a h R Cn S | h x b
100 99 eqeq1d v = h R Cn S | h x b h R Cn S | h x a v = h R Cn S | h x a h R Cn S | h x b =
101 98 100 3anbi23d v = h R Cn S | h x b f h R Cn S | h x a g v h R Cn S | h x a v = f h R Cn S | h x a g h R Cn S | h x b h R Cn S | h x a h R Cn S | h x b =
102 97 101 rspc2ev h R Cn S | h x a S ^ ko R h R Cn S | h x b S ^ ko R f h R Cn S | h x a g h R Cn S | h x b h R Cn S | h x a h R Cn S | h x b = u S ^ ko R v S ^ ko R f u g v u v =
103 49 51 61 71 93 102 syl113anc R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = u S ^ ko R v S ^ ko R f u g v u v =
104 103 expr R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = u S ^ ko R v S ^ ko R f u g v u v =
105 104 rexlimdvva R Top S Haus f R Cn S g R Cn S x R a S b S f x a g x b a b = u S ^ ko R v S ^ ko R f u g v u v =
106 35 105 syld R Top S Haus f R Cn S g R Cn S x R ¬ f x = g x u S ^ ko R v S ^ ko R f u g v u v =
107 106 rexlimdva R Top S Haus f R Cn S g R Cn S x R ¬ f x = g x u S ^ ko R v S ^ ko R f u g v u v =
108 23 107 syl5bir R Top S Haus f R Cn S g R Cn S ¬ x R f x = g x u S ^ ko R v S ^ ko R f u g v u v =
109 22 108 sylbid R Top S Haus f R Cn S g R Cn S f g u S ^ ko R v S ^ ko R f u g v u v =
110 109 ex R Top S Haus f R Cn S g R Cn S f g u S ^ ko R v S ^ ko R f u g v u v =
111 9 110 sylbird R Top S Haus f S ^ ko R g S ^ ko R f g u S ^ ko R v S ^ ko R f u g v u v =
112 111 ralrimivv R Top S Haus f S ^ ko R g S ^ ko R f g u S ^ ko R v S ^ ko R f u g v u v =
113 eqid S ^ ko R = S ^ ko R
114 113 ishaus S ^ ko R Haus S ^ ko R Top f S ^ ko R g S ^ ko R f g u S ^ ko R v S ^ ko R f u g v u v =
115 3 112 114 sylanbrc R Top S Haus S ^ ko R Haus