Step |
Hyp |
Ref |
Expression |
1 |
|
haustop |
|
2 |
|
xkotop |
|
3 |
1 2
|
sylan2 |
|
4 |
|
eqid |
|
5 |
4
|
xkouni |
|
6 |
1 5
|
sylan2 |
|
7 |
6
|
eleq2d |
|
8 |
6
|
eleq2d |
|
9 |
7 8
|
anbi12d |
|
10 |
|
simprl |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
11 12
|
cnf |
|
14 |
10 13
|
syl |
|
15 |
14
|
ffnd |
|
16 |
|
simprr |
|
17 |
11 12
|
cnf |
|
18 |
16 17
|
syl |
|
19 |
18
|
ffnd |
|
20 |
|
eqfnfv |
|
21 |
15 19 20
|
syl2anc |
|
22 |
21
|
necon3abid |
|
23 |
|
rexnal |
|
24 |
|
df-ne |
|
25 |
|
simpllr |
|
26 |
14
|
adantr |
|
27 |
|
simprl |
|
28 |
26 27
|
ffvelrnd |
|
29 |
18
|
adantr |
|
30 |
29 27
|
ffvelrnd |
|
31 |
|
simprr |
|
32 |
12
|
hausnei |
|
33 |
25 28 30 31 32
|
syl13anc |
|
34 |
33
|
expr |
|
35 |
24 34
|
syl5bir |
|
36 |
|
simp-4l |
|
37 |
1
|
ad4antlr |
|
38 |
|
simplr |
|
39 |
38
|
snssd |
|
40 |
|
toptopon2 |
|
41 |
36 40
|
sylib |
|
42 |
|
restsn2 |
|
43 |
41 38 42
|
syl2anc |
|
44 |
|
snfi |
|
45 |
|
discmp |
|
46 |
44 45
|
mpbi |
|
47 |
43 46
|
eqeltrdi |
|
48 |
|
simprll |
|
49 |
11 36 37 39 47 48
|
xkoopn |
|
50 |
|
simprlr |
|
51 |
11 36 37 39 47 50
|
xkoopn |
|
52 |
|
imaeq1 |
|
53 |
52
|
sseq1d |
|
54 |
10
|
ad2antrr |
|
55 |
15
|
ad2antrr |
|
56 |
|
fnsnfv |
|
57 |
55 38 56
|
syl2anc |
|
58 |
|
simprr1 |
|
59 |
58
|
snssd |
|
60 |
57 59
|
eqsstrrd |
|
61 |
53 54 60
|
elrabd |
|
62 |
|
imaeq1 |
|
63 |
62
|
sseq1d |
|
64 |
16
|
ad2antrr |
|
65 |
19
|
ad2antrr |
|
66 |
|
fnsnfv |
|
67 |
65 38 66
|
syl2anc |
|
68 |
|
simprr2 |
|
69 |
68
|
snssd |
|
70 |
67 69
|
eqsstrrd |
|
71 |
63 64 70
|
elrabd |
|
72 |
|
inrab |
|
73 |
|
simpllr |
|
74 |
11 12
|
cnf |
|
75 |
74
|
fdmd |
|
76 |
75
|
adantl |
|
77 |
73 76
|
eleqtrrd |
|
78 |
|
simprr3 |
|
79 |
78
|
adantr |
|
80 |
|
sseq0 |
|
81 |
80
|
expcom |
|
82 |
79 81
|
syl |
|
83 |
|
imadisj |
|
84 |
|
disjsn |
|
85 |
83 84
|
bitri |
|
86 |
82 85
|
syl6ib |
|
87 |
77 86
|
mt2d |
|
88 |
|
ssin |
|
89 |
87 88
|
sylnibr |
|
90 |
89
|
ralrimiva |
|
91 |
|
rabeq0 |
|
92 |
90 91
|
sylibr |
|
93 |
72 92
|
eqtrid |
|
94 |
|
eleq2 |
|
95 |
|
ineq1 |
|
96 |
95
|
eqeq1d |
|
97 |
94 96
|
3anbi13d |
|
98 |
|
eleq2 |
|
99 |
|
ineq2 |
|
100 |
99
|
eqeq1d |
|
101 |
98 100
|
3anbi23d |
|
102 |
97 101
|
rspc2ev |
|
103 |
49 51 61 71 93 102
|
syl113anc |
|
104 |
103
|
expr |
|
105 |
104
|
rexlimdvva |
|
106 |
35 105
|
syld |
|
107 |
106
|
rexlimdva |
|
108 |
23 107
|
syl5bir |
|
109 |
22 108
|
sylbid |
|
110 |
109
|
ex |
|
111 |
9 110
|
sylbird |
|
112 |
111
|
ralrimivv |
|
113 |
|
eqid |
|
114 |
113
|
ishaus |
|
115 |
3 112 114
|
sylanbrc |
|