| Step | Hyp | Ref | Expression | 
						
							| 1 |  | haustop |  | 
						
							| 2 |  | xkotop |  | 
						
							| 3 | 1 2 | sylan2 |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 | 4 | xkouni |  | 
						
							| 6 | 1 5 | sylan2 |  | 
						
							| 7 | 6 | eleq2d |  | 
						
							| 8 | 6 | eleq2d |  | 
						
							| 9 | 7 8 | anbi12d |  | 
						
							| 10 |  | simprl |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 11 12 | cnf |  | 
						
							| 14 | 10 13 | syl |  | 
						
							| 15 | 14 | ffnd |  | 
						
							| 16 |  | simprr |  | 
						
							| 17 | 11 12 | cnf |  | 
						
							| 18 | 16 17 | syl |  | 
						
							| 19 | 18 | ffnd |  | 
						
							| 20 |  | eqfnfv |  | 
						
							| 21 | 15 19 20 | syl2anc |  | 
						
							| 22 | 21 | necon3abid |  | 
						
							| 23 |  | rexnal |  | 
						
							| 24 |  | df-ne |  | 
						
							| 25 |  | simpllr |  | 
						
							| 26 | 14 | adantr |  | 
						
							| 27 |  | simprl |  | 
						
							| 28 | 26 27 | ffvelcdmd |  | 
						
							| 29 | 18 | adantr |  | 
						
							| 30 | 29 27 | ffvelcdmd |  | 
						
							| 31 |  | simprr |  | 
						
							| 32 | 12 | hausnei |  | 
						
							| 33 | 25 28 30 31 32 | syl13anc |  | 
						
							| 34 | 33 | expr |  | 
						
							| 35 | 24 34 | biimtrrid |  | 
						
							| 36 |  | simp-4l |  | 
						
							| 37 | 1 | ad4antlr |  | 
						
							| 38 |  | simplr |  | 
						
							| 39 | 38 | snssd |  | 
						
							| 40 |  | toptopon2 |  | 
						
							| 41 | 36 40 | sylib |  | 
						
							| 42 |  | restsn2 |  | 
						
							| 43 | 41 38 42 | syl2anc |  | 
						
							| 44 |  | snfi |  | 
						
							| 45 |  | discmp |  | 
						
							| 46 | 44 45 | mpbi |  | 
						
							| 47 | 43 46 | eqeltrdi |  | 
						
							| 48 |  | simprll |  | 
						
							| 49 | 11 36 37 39 47 48 | xkoopn |  | 
						
							| 50 |  | simprlr |  | 
						
							| 51 | 11 36 37 39 47 50 | xkoopn |  | 
						
							| 52 |  | imaeq1 |  | 
						
							| 53 | 52 | sseq1d |  | 
						
							| 54 | 10 | ad2antrr |  | 
						
							| 55 | 15 | ad2antrr |  | 
						
							| 56 |  | fnsnfv |  | 
						
							| 57 | 55 38 56 | syl2anc |  | 
						
							| 58 |  | simprr1 |  | 
						
							| 59 | 58 | snssd |  | 
						
							| 60 | 57 59 | eqsstrrd |  | 
						
							| 61 | 53 54 60 | elrabd |  | 
						
							| 62 |  | imaeq1 |  | 
						
							| 63 | 62 | sseq1d |  | 
						
							| 64 | 16 | ad2antrr |  | 
						
							| 65 | 19 | ad2antrr |  | 
						
							| 66 |  | fnsnfv |  | 
						
							| 67 | 65 38 66 | syl2anc |  | 
						
							| 68 |  | simprr2 |  | 
						
							| 69 | 68 | snssd |  | 
						
							| 70 | 67 69 | eqsstrrd |  | 
						
							| 71 | 63 64 70 | elrabd |  | 
						
							| 72 |  | inrab |  | 
						
							| 73 |  | simpllr |  | 
						
							| 74 | 11 12 | cnf |  | 
						
							| 75 | 74 | fdmd |  | 
						
							| 76 | 75 | adantl |  | 
						
							| 77 | 73 76 | eleqtrrd |  | 
						
							| 78 |  | simprr3 |  | 
						
							| 79 | 78 | adantr |  | 
						
							| 80 |  | sseq0 |  | 
						
							| 81 | 80 | expcom |  | 
						
							| 82 | 79 81 | syl |  | 
						
							| 83 |  | imadisj |  | 
						
							| 84 |  | disjsn |  | 
						
							| 85 | 83 84 | bitri |  | 
						
							| 86 | 82 85 | imbitrdi |  | 
						
							| 87 | 77 86 | mt2d |  | 
						
							| 88 |  | ssin |  | 
						
							| 89 | 87 88 | sylnibr |  | 
						
							| 90 | 89 | ralrimiva |  | 
						
							| 91 |  | rabeq0 |  | 
						
							| 92 | 90 91 | sylibr |  | 
						
							| 93 | 72 92 | eqtrid |  | 
						
							| 94 |  | eleq2 |  | 
						
							| 95 |  | ineq1 |  | 
						
							| 96 | 95 | eqeq1d |  | 
						
							| 97 | 94 96 | 3anbi13d |  | 
						
							| 98 |  | eleq2 |  | 
						
							| 99 |  | ineq2 |  | 
						
							| 100 | 99 | eqeq1d |  | 
						
							| 101 | 98 100 | 3anbi23d |  | 
						
							| 102 | 97 101 | rspc2ev |  | 
						
							| 103 | 49 51 61 71 93 102 | syl113anc |  | 
						
							| 104 | 103 | expr |  | 
						
							| 105 | 104 | rexlimdvva |  | 
						
							| 106 | 35 105 | syld |  | 
						
							| 107 | 106 | rexlimdva |  | 
						
							| 108 | 23 107 | biimtrrid |  | 
						
							| 109 | 22 108 | sylbid |  | 
						
							| 110 | 109 | ex |  | 
						
							| 111 | 9 110 | sylbird |  | 
						
							| 112 | 111 | ralrimivv |  | 
						
							| 113 |  | eqid |  | 
						
							| 114 | 113 | ishaus |  | 
						
							| 115 | 3 112 114 | sylanbrc |  |