| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 2 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 3 |  | pnfge | ⊢ ( 1  ∈  ℝ*  →  1  ≤  +∞ ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ 1  ≤  +∞ | 
						
							| 5 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 6 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 7 |  | elicc1 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( 1  ∈  ( 0 [,] +∞ )  ↔  ( 1  ∈  ℝ*  ∧  0  ≤  1  ∧  1  ≤  +∞ ) ) ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ ( 1  ∈  ( 0 [,] +∞ )  ↔  ( 1  ∈  ℝ*  ∧  0  ≤  1  ∧  1  ≤  +∞ ) ) | 
						
							| 9 | 1 2 4 8 | mpbir3an | ⊢ 1  ∈  ( 0 [,] +∞ ) | 
						
							| 10 |  | 0e0iccpnf | ⊢ 0  ∈  ( 0 [,] +∞ ) | 
						
							| 11 | 9 10 | ifcli | ⊢ if ( 0  ∈  𝑎 ,  1 ,  0 )  ∈  ( 0 [,] +∞ ) | 
						
							| 12 | 11 | rgenw | ⊢ ∀ 𝑎  ∈  𝒫  ℝ if ( 0  ∈  𝑎 ,  1 ,  0 )  ∈  ( 0 [,] +∞ ) | 
						
							| 13 |  | df-dde | ⊢ δ  =  ( 𝑎  ∈  𝒫  ℝ  ↦  if ( 0  ∈  𝑎 ,  1 ,  0 ) ) | 
						
							| 14 | 13 | fmpt | ⊢ ( ∀ 𝑎  ∈  𝒫  ℝ if ( 0  ∈  𝑎 ,  1 ,  0 )  ∈  ( 0 [,] +∞ )  ↔  δ : 𝒫  ℝ ⟶ ( 0 [,] +∞ ) ) | 
						
							| 15 | 12 14 | mpbi | ⊢ δ : 𝒫  ℝ ⟶ ( 0 [,] +∞ ) | 
						
							| 16 |  | 0ss | ⊢ ∅  ⊆  ℝ | 
						
							| 17 |  | noel | ⊢ ¬  0  ∈  ∅ | 
						
							| 18 |  | ddeval0 | ⊢ ( ( ∅  ⊆  ℝ  ∧  ¬  0  ∈  ∅ )  →  ( δ ‘ ∅ )  =  0 ) | 
						
							| 19 | 16 17 18 | mp2an | ⊢ ( δ ‘ ∅ )  =  0 | 
						
							| 20 |  | rabxm | ⊢ 𝑥  =  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∪  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ) | 
						
							| 21 |  | esumeq1 | ⊢ ( 𝑥  =  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∪  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∪  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ) ( δ ‘ 𝑦 ) ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∪  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ) ( δ ‘ 𝑦 ) | 
						
							| 23 |  | nfv | ⊢ Ⅎ 𝑦 𝑥  ∈  𝒫  𝒫  ℝ | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑦 { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑦 { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } | 
						
							| 26 |  | rabexg | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∈  V ) | 
						
							| 27 |  | rabexg | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  ∈  V ) | 
						
							| 28 |  | rabnc | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∩  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  =  ∅ | 
						
							| 29 | 28 | a1i | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∩  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  =  ∅ ) | 
						
							| 30 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  →  𝑦  ∈  𝑥 ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } )  →  𝑦  ∈  𝑥 ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } )  →  𝑥  ∈  𝒫  𝒫  ℝ ) | 
						
							| 33 |  | elelpwi | ⊢ ( ( 𝑦  ∈  𝑥  ∧  𝑥  ∈  𝒫  𝒫  ℝ )  →  𝑦  ∈  𝒫  ℝ ) | 
						
							| 34 | 31 32 33 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } )  →  𝑦  ∈  𝒫  ℝ ) | 
						
							| 35 | 15 | ffvelcdmi | ⊢ ( 𝑦  ∈  𝒫  ℝ  →  ( δ ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } )  →  ( δ ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 37 |  | elrabi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  →  𝑦  ∈  𝑥 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  𝑦  ∈  𝑥 ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  𝑥  ∈  𝒫  𝒫  ℝ ) | 
						
							| 40 | 38 39 33 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  𝑦  ∈  𝒫  ℝ ) | 
						
							| 41 | 40 35 | syl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  ( δ ‘ 𝑦 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 42 | 23 24 25 26 27 29 36 41 | esumsplit | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  Σ* 𝑦  ∈  ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ∪  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ) ( δ ‘ 𝑦 )  =  ( Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  +𝑒  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 ) ) ) | 
						
							| 43 | 22 42 | eqtrid | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 )  =  ( Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  +𝑒  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 )  =  ( Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  +𝑒  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 ) ) ) | 
						
							| 45 |  | esumeq1 | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 ) ) | 
						
							| 46 | 45 | adantl | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 ) ) | 
						
							| 47 |  | simp-4l | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  𝑥  ∈  𝒫  𝒫  ℝ ) | 
						
							| 48 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 49 | 48 | rabsnel | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  →  𝑘  ∈  𝑥 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  𝑘  ∈  𝑥 ) | 
						
							| 51 |  | eleq2w | ⊢ ( 𝑎  =  𝑘  →  ( 0  ∈  𝑎  ↔  0  ∈  𝑘 ) ) | 
						
							| 52 | 48 51 | rabsnt | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  →  0  ∈  𝑘 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  0  ∈  𝑘 ) | 
						
							| 54 |  | elelpwi | ⊢ ( ( 𝑘  ∈  𝑥  ∧  𝑥  ∈  𝒫  𝒫  ℝ )  →  𝑘  ∈  𝒫  ℝ ) | 
						
							| 55 | 54 | ancoms | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑘  ∈  𝑥 )  →  𝑘  ∈  𝒫  ℝ ) | 
						
							| 56 | 55 | adantrr | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  𝑘  ∈  𝒫  ℝ ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝑘  ∈  𝒫  ℝ  ∧  𝑦  =  𝑘 )  →  𝑦  =  𝑘 ) | 
						
							| 58 | 57 | fveq2d | ⊢ ( ( 𝑘  ∈  𝒫  ℝ  ∧  𝑦  =  𝑘 )  →  ( δ ‘ 𝑦 )  =  ( δ ‘ 𝑘 ) ) | 
						
							| 59 | 48 | a1i | ⊢ ( 𝑘  ∈  𝒫  ℝ  →  𝑘  ∈  V ) | 
						
							| 60 | 15 | ffvelcdmi | ⊢ ( 𝑘  ∈  𝒫  ℝ  →  ( δ ‘ 𝑘 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 61 | 58 59 60 | esumsn | ⊢ ( 𝑘  ∈  𝒫  ℝ  →  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 )  =  ( δ ‘ 𝑘 ) ) | 
						
							| 62 | 56 61 | syl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 )  =  ( δ ‘ 𝑘 ) ) | 
						
							| 63 | 56 | elpwid | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  𝑘  ⊆  ℝ ) | 
						
							| 64 |  | simprr | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  0  ∈  𝑘 ) | 
						
							| 65 |  | ddeval1 | ⊢ ( ( 𝑘  ⊆  ℝ  ∧  0  ∈  𝑘 )  →  ( δ ‘ 𝑘 )  =  1 ) | 
						
							| 66 | 63 64 65 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  ( δ ‘ 𝑘 )  =  1 ) | 
						
							| 67 | 62 66 | eqtrd | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑘  ∈  𝑥  ∧  0  ∈  𝑘 ) )  →  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 )  =  1 ) | 
						
							| 68 | 47 50 53 67 | syl12anc | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  Σ* 𝑦  ∈  { 𝑘 } ( δ ‘ 𝑦 )  =  1 ) | 
						
							| 69 | 46 68 | eqtrd | ⊢ ( ( ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  ∧  𝑘  ∈  𝑥 )  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  1 ) | 
						
							| 70 |  | df-disj | ⊢ ( Disj  𝑦  ∈  𝑥 𝑦  ↔  ∀ 𝑘 ∃* 𝑦  ∈  𝑥 𝑘  ∈  𝑦 ) | 
						
							| 71 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 72 |  | eleq1 | ⊢ ( 𝑘  =  0  →  ( 𝑘  ∈  𝑦  ↔  0  ∈  𝑦 ) ) | 
						
							| 73 | 72 | rmobidv | ⊢ ( 𝑘  =  0  →  ( ∃* 𝑦  ∈  𝑥 𝑘  ∈  𝑦  ↔  ∃* 𝑦  ∈  𝑥 0  ∈  𝑦 ) ) | 
						
							| 74 | 71 73 | spcv | ⊢ ( ∀ 𝑘 ∃* 𝑦  ∈  𝑥 𝑘  ∈  𝑦  →  ∃* 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 75 | 70 74 | sylbi | ⊢ ( Disj  𝑦  ∈  𝑥 𝑦  →  ∃* 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 76 |  | rmo5 | ⊢ ( ∃* 𝑦  ∈  𝑥 0  ∈  𝑦  ↔  ( ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  ∃! 𝑦  ∈  𝑥 0  ∈  𝑦 ) ) | 
						
							| 77 | 76 | biimpi | ⊢ ( ∃* 𝑦  ∈  𝑥 0  ∈  𝑦  →  ( ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  ∃! 𝑦  ∈  𝑥 0  ∈  𝑦 ) ) | 
						
							| 78 | 77 | imp | ⊢ ( ( ∃* 𝑦  ∈  𝑥 0  ∈  𝑦  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ∃! 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 79 | 75 78 | sylan | ⊢ ( ( Disj  𝑦  ∈  𝑥 𝑦  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ∃! 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 80 |  | reusn | ⊢ ( ∃! 𝑦  ∈  𝑥 0  ∈  𝑦  ↔  ∃ 𝑘 { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 } ) | 
						
							| 81 | 79 80 | sylib | ⊢ ( ( Disj  𝑦  ∈  𝑥 𝑦  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ∃ 𝑘 { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 } ) | 
						
							| 82 |  | eleq2w | ⊢ ( 𝑎  =  𝑦  →  ( 0  ∈  𝑎  ↔  0  ∈  𝑦 ) ) | 
						
							| 83 | 82 | cbvrabv | ⊢ { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 } | 
						
							| 84 | 83 | eqeq1i | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  ↔  { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 } ) | 
						
							| 85 | 49 | ancri | ⊢ ( { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  →  ( 𝑘  ∈  𝑥  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) ) | 
						
							| 86 | 84 85 | sylbir | ⊢ ( { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 }  →  ( 𝑘  ∈  𝑥  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) ) | 
						
							| 87 | 86 | eximi | ⊢ ( ∃ 𝑘 { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 }  →  ∃ 𝑘 ( 𝑘  ∈  𝑥  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) ) | 
						
							| 88 |  | df-rex | ⊢ ( ∃ 𝑘  ∈  𝑥 { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 }  ↔  ∃ 𝑘 ( 𝑘  ∈  𝑥  ∧  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) ) | 
						
							| 89 | 87 88 | sylibr | ⊢ ( ∃ 𝑘 { 𝑦  ∈  𝑥  ∣  0  ∈  𝑦 }  =  { 𝑘 }  →  ∃ 𝑘  ∈  𝑥 { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) | 
						
							| 90 | 81 89 | syl | ⊢ ( ( Disj  𝑦  ∈  𝑥 𝑦  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ∃ 𝑘  ∈  𝑥 { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) | 
						
							| 91 | 90 | adantll | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ∃ 𝑘  ∈  𝑥 { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  { 𝑘 } ) | 
						
							| 92 | 69 91 | r19.29a | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  1 ) | 
						
							| 93 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  𝑥  ⊆  𝒫  ℝ ) | 
						
							| 94 |  | sspwuni | ⊢ ( 𝑥  ⊆  𝒫  ℝ  ↔  ∪  𝑥  ⊆  ℝ ) | 
						
							| 95 | 93 94 | sylib | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  ∪  𝑥  ⊆  ℝ ) | 
						
							| 96 |  | eluni2 | ⊢ ( 0  ∈  ∪  𝑥  ↔  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 97 | 96 | biimpri | ⊢ ( ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  0  ∈  ∪  𝑥 ) | 
						
							| 98 |  | ddeval1 | ⊢ ( ( ∪  𝑥  ⊆  ℝ  ∧  0  ∈  ∪  𝑥 )  →  ( δ ‘ ∪  𝑥 )  =  1 ) | 
						
							| 99 | 95 97 98 | syl2an | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  1 ) | 
						
							| 100 | 99 | adantlr | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  1 ) | 
						
							| 101 | 92 100 | eqtr4d | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 102 |  | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 | 
						
							| 103 | 102 | nfn | ⊢ Ⅎ 𝑦 ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 | 
						
							| 104 | 82 | elrab | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ↔  ( 𝑦  ∈  𝑥  ∧  0  ∈  𝑦 ) ) | 
						
							| 105 | 104 | exbii | ⊢ ( ∃ 𝑦 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑥  ∧  0  ∈  𝑦 ) ) | 
						
							| 106 |  | neq0 | ⊢ ( ¬  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  ∅  ↔  ∃ 𝑦 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ) | 
						
							| 107 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑥  ∧  0  ∈  𝑦 ) ) | 
						
							| 108 | 105 106 107 | 3bitr4i | ⊢ ( ¬  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  ∅  ↔  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 109 | 108 | biimpi | ⊢ ( ¬  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  ∅  →  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 110 | 109 | con1i | ⊢ ( ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 }  =  ∅ ) | 
						
							| 111 | 103 110 | esumeq1d | ⊢ ( ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  ∅ ( δ ‘ 𝑦 ) ) | 
						
							| 112 |  | esumnul | ⊢ Σ* 𝑦  ∈  ∅ ( δ ‘ 𝑦 )  =  0 | 
						
							| 113 | 111 112 | eqtrdi | ⊢ ( ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 114 | 113 | adantl | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 115 | 96 | biimpi | ⊢ ( 0  ∈  ∪  𝑥  →  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 ) | 
						
							| 116 | 115 | con3i | ⊢ ( ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦  →  ¬  0  ∈  ∪  𝑥 ) | 
						
							| 117 |  | ddeval0 | ⊢ ( ( ∪  𝑥  ⊆  ℝ  ∧  ¬  0  ∈  ∪  𝑥 )  →  ( δ ‘ ∪  𝑥 )  =  0 ) | 
						
							| 118 | 95 116 117 | syl2an | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  0 ) | 
						
							| 119 | 118 | adantlr | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  0 ) | 
						
							| 120 | 114 119 | eqtr4d | ⊢ ( ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  ∧  ¬  ∃ 𝑦  ∈  𝑥 0  ∈  𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 121 | 101 120 | pm2.61dan | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 122 | 40 | elpwid | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  𝑦  ⊆  ℝ ) | 
						
							| 123 | 82 | notbid | ⊢ ( 𝑎  =  𝑦  →  ( ¬  0  ∈  𝑎  ↔  ¬  0  ∈  𝑦 ) ) | 
						
							| 124 | 123 | elrab | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  ↔  ( 𝑦  ∈  𝑥  ∧  ¬  0  ∈  𝑦 ) ) | 
						
							| 125 | 124 | simprbi | ⊢ ( 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  →  ¬  0  ∈  𝑦 ) | 
						
							| 126 | 125 | adantl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  ¬  0  ∈  𝑦 ) | 
						
							| 127 |  | ddeval0 | ⊢ ( ( 𝑦  ⊆  ℝ  ∧  ¬  0  ∈  𝑦 )  →  ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 128 | 122 126 127 | syl2anc | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } )  →  ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 129 | 128 | esumeq2dv | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } 0 ) | 
						
							| 130 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 131 | 130 | rabex | ⊢ { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  ∈  V | 
						
							| 132 | 25 | esum0 | ⊢ ( { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 }  ∈  V  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } 0  =  0 ) | 
						
							| 133 | 131 132 | ax-mp | ⊢ Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } 0  =  0 | 
						
							| 134 | 129 133 | eqtrdi | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 135 | 134 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 )  =  0 ) | 
						
							| 136 | 121 135 | oveq12d | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  0  ∈  𝑎 } ( δ ‘ 𝑦 )  +𝑒  Σ* 𝑦  ∈  { 𝑎  ∈  𝑥  ∣  ¬  0  ∈  𝑎 } ( δ ‘ 𝑦 ) )  =  ( ( δ ‘ ∪  𝑥 )  +𝑒  0 ) ) | 
						
							| 137 |  | vuniex | ⊢ ∪  𝑥  ∈  V | 
						
							| 138 | 137 | elpw | ⊢ ( ∪  𝑥  ∈  𝒫  ℝ  ↔  ∪  𝑥  ⊆  ℝ ) | 
						
							| 139 | 138 | biimpri | ⊢ ( ∪  𝑥  ⊆  ℝ  →  ∪  𝑥  ∈  𝒫  ℝ ) | 
						
							| 140 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 141 | 15 | ffvelcdmi | ⊢ ( ∪  𝑥  ∈  𝒫  ℝ  →  ( δ ‘ ∪  𝑥 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 142 | 140 141 | sselid | ⊢ ( ∪  𝑥  ∈  𝒫  ℝ  →  ( δ ‘ ∪  𝑥 )  ∈  ℝ* ) | 
						
							| 143 |  | xaddrid | ⊢ ( ( δ ‘ ∪  𝑥 )  ∈  ℝ*  →  ( ( δ ‘ ∪  𝑥 )  +𝑒  0 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 144 | 95 139 142 143 | 4syl | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  ( ( δ ‘ ∪  𝑥 )  +𝑒  0 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 145 | 144 | adantr | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( ( δ ‘ ∪  𝑥 )  +𝑒  0 )  =  ( δ ‘ ∪  𝑥 ) ) | 
						
							| 146 | 44 136 145 | 3eqtrrd | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) | 
						
							| 147 | 146 | adantrl | ⊢ ( ( 𝑥  ∈  𝒫  𝒫  ℝ  ∧  ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 ) )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) | 
						
							| 148 | 147 | ex | ⊢ ( 𝑥  ∈  𝒫  𝒫  ℝ  →  ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) ) | 
						
							| 149 | 148 | rgen | ⊢ ∀ 𝑥  ∈  𝒫  𝒫  ℝ ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) | 
						
							| 150 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 151 |  | pwsiga | ⊢ ( ℝ  ∈  V  →  𝒫  ℝ  ∈  ( sigAlgebra ‘ ℝ ) ) | 
						
							| 152 | 150 151 | ax-mp | ⊢ 𝒫  ℝ  ∈  ( sigAlgebra ‘ ℝ ) | 
						
							| 153 |  | elrnsiga | ⊢ ( 𝒫  ℝ  ∈  ( sigAlgebra ‘ ℝ )  →  𝒫  ℝ  ∈  ∪  ran  sigAlgebra ) | 
						
							| 154 |  | ismeas | ⊢ ( 𝒫  ℝ  ∈  ∪  ran  sigAlgebra  →  ( δ  ∈  ( measures ‘ 𝒫  ℝ )  ↔  ( δ : 𝒫  ℝ ⟶ ( 0 [,] +∞ )  ∧  ( δ ‘ ∅ )  =  0  ∧  ∀ 𝑥  ∈  𝒫  𝒫  ℝ ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) ) ) ) | 
						
							| 155 | 152 153 154 | mp2b | ⊢ ( δ  ∈  ( measures ‘ 𝒫  ℝ )  ↔  ( δ : 𝒫  ℝ ⟶ ( 0 [,] +∞ )  ∧  ( δ ‘ ∅ )  =  0  ∧  ∀ 𝑥  ∈  𝒫  𝒫  ℝ ( ( 𝑥  ≼  ω  ∧  Disj  𝑦  ∈  𝑥 𝑦 )  →  ( δ ‘ ∪  𝑥 )  =  Σ* 𝑦  ∈  𝑥 ( δ ‘ 𝑦 ) ) ) ) | 
						
							| 156 | 15 19 149 155 | mpbir3an | ⊢ δ  ∈  ( measures ‘ 𝒫  ℝ ) |